基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
To reduce the computation cost of a combined probabilistic graphical model and a deep neural network in semantic segmentation, the local region condition random field (LRCRF) model is investigated which selectively applies the condition random field (CRF) to the most active region in the image. The full convolutional network structure is optimized with the ResNet-18 structure and dilated convolution to expand the receptive field. The tracking networks are also improved based on SiameseFC by considering the frame relations in consecutive-frame traffic scene maps. Moreover, the segmentation results of the greyscale input data sets are more stable and effective than using the RGB images for deep neural network feature extraction. The experimental results show that the proposed method takes advantage of the image features directly and achieves good real-time performance and high segmentation accuracy.
推荐文章
Forest carbon storage in Guizhou Province based on field measurement dataset
Forest carbon storage
Field measurement dataset
Karst landform
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
Geochronology and geochemistry of the five magmatic rocks in the Ningzhen region, China
Intermediate–acidic intrusive complexes
LA–ICP–MS zircon U–Pb dating
Geochemistry
Geodynamic setting
Ningzhen region
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 An Image Segmentation Algorithm Based on a Local Region Conditional Random Field Model
来源期刊 通讯、网络与系统学国际期刊(英文) 学科 工学
关键词 Image Segmentation Local Region Condition Random Field Model Deep Neural Network Consecutive Shooting Traffic Scene
年,卷(期) 2020,(9) 所属期刊栏目
研究方向 页码范围 139-159
页数 21页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Image
Segmentation
Local
Region
Condition
Random
Field
Model
Deep
Neural
Network
Consecutive
Shooting
Traffic
Scene
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
通讯、网络与系统学国际期刊(英文)
月刊
1913-3715
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
763
总下载数(次)
1
总被引数(次)
0
论文1v1指导