基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
A new simple fictitious domain method, the algebraic immersed interface and boundary (AIIB) method, is presented for elliptic equations with immersed interface conditions. This method allows jump conditions on immersed interfaces to be discretized with a good accuracy on a compact stencil. Auxiliary unknowns are created at existing grid locations to increase the degrees of freedom of the initial problem. These auxiliary unknowns allow imposing various constraints to the system on interfaces of complex shapes. For instance, the method is able to deal with immersed interfaces for elliptic equations with jump conditions on the solution or discontinuous coefficients with a second order of spatial accuracy. As the AIIB method acts on an algebraic level and only changes the problem matrix, no particular attention to the initial discretization is required. The method can be easily implemented in any structured grid code and can deal with immersed boundary problems too. Several validation problems are presented to demonstrate the interest and accuracy of the method.
推荐文章
T-JUMP/FTIR联用技术研究RDX的热裂解过程
物理化学
T-JUMP/FTIR联用技术
RDX
快速热裂解
分解机理
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 The Algebraic Immersed Interface and Boundary Method for Elliptic Equations with Jump Conditions
来源期刊 流体动力学(英文) 学科 数学
关键词 Fictitious Domain Immersed Interface Method Immersed Boundary Method Penalty Methods Finite Volumes Elliptic Equations Jump Embedded Conditions
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 239-269
页数 31页 分类号 O17
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Fictitious
Domain
Immersed
Interface
Method
Immersed
Boundary
Method
Penalty
Methods
Finite
Volumes
Elliptic
Equations
Jump
Embedded
Conditions
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
流体动力学(英文)
季刊
2165-3852
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
302
总下载数(次)
0
总被引数(次)
0
论文1v1指导