基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Phishing is a technique under Social Engineering attacks which is most widely used to get user sensitive information,such as login credentials and credit and debit card information,etc.It is carried out by a person masquerading as an authentic individual.To protect web users from these attacks,various anti-phishing techniques are developed,but they fail to protect the user from these attacks in various ways.In this paper,we propose a novel technique to identify phishing websites effortlessly on the client side by proposing a novel browser architecture.In this system,we use the rule of extraction framework to extract the properties or features of a website using the URL only.This list consists of 30 different properties of a URL,which will later be used by the Random Forest Classification machine learning model to detect the authenticity of the website.A dataset consisting of 11,055 tuples is used to train the model.These processes are carried out on the client-side with the help of a redesigned browser architecture.Today Researches have come up with machine learning frameworks to detect phishing sites,but they are not in a state to be used by individuals having no technical knowledge.To make sure that these tools are accessible to every individual,we have improvised and introduced detection methods into the browser architecture named as'Embedded Phishing Detection Browser'(EPDB),which is a novel method to preserve the existing user experience while improving the security.The newly designed browser architecture introduces a special segment to perform phishing detection operations in real-time.We have prototyped this technique to ensure maximum security,better accuracy of 99.36% in the identification of phishing websites in real-time.
推荐文章
Forest carbon storage in Guizhou Province based on field measurement dataset
Forest carbon storage
Field measurement dataset
Karst landform
基于Random Forest和AHP的贵德县北部山区滑坡危险性评价
滑坡危险性
组合赋权模型
层次分析法
随机森林法
Entity Framework浅析
EDM
ADO.NET
Entity Framework
编程员
Entity Framework数据库访问
数据库
模型
代码
Entity Framework技术
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Development of anti-phishing browser based on random forest and rule of extraction framework
来源期刊 网络空间安全科学与技术(英文版) 学科
关键词
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 74-87
页数 14页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
网络空间安全科学与技术(英文版)
季刊
2096-4862
10-1537/T
eng
出版文献量(篇)
54
总下载数(次)
0
总被引数(次)
0
论文1v1指导