基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The feature information of the local graph structure and the nodes may be over-smoothing due to the large number of encodings,which causes the node characterization to converge to one or several values.In other words,nodes from different clusters become difficult to distinguish,as two different classes of nodes with closer topological distance are more likely to belong to the same class and vice versa.To alleviate this problem,an over-smoothing algorithm is proposed,and a method of reweighted mechanism is applied to make the tradeoff of the information representation of nodes and neighborhoods more reasonable.By improving several propagation models,including Chebyshev polynomial kernel model and Laplace linear 1st Chebyshev kernel model,a new model named RWGCN based on different propagation kernels was proposed logically.The experiments show that satisfactory results are achieved on the semi-supervised classification task of graph type data.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Over-Smoothing Algorithm and Its Application to GCN Semi-supervised Classification
来源期刊 国际计算机前沿大会会议论文集 学科 数学
关键词 GCN Chebyshev polynomial kernel model Laplace linear 1st Chebyshev kernel model Over-smoothing Reweighted mechanism
年,卷(期) 2020,(2) 所属期刊栏目
研究方向 页码范围 197-215
页数 19页 分类号 O17
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
GCN
Chebyshev
polynomial
kernel
model
Laplace
linear
1st
Chebyshev
kernel
model
Over-smoothing
Reweighted
mechanism
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导