基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
We have developed a web-based processing system that can simulate positive and negative sea level changes globally by selecting the best Digital Elevation Model (DEM) for a target region from multiple DEMs. A PNG elevation tile format is used as the DEM format, which reduces the DEM data size. The PNG tile format implements client-based processing, and the DEM data are provided from different websites. In addition, the smart tile architecture is adopted, which enables on-demand simulation by adding a tile conversion process (<em>i.e.</em>, a DEM selection process) during image drawing by using JavaScript. To demonstrate the system, we have employed three DEMs,<em> i.e.</em>, the Geospatial Information Authority of Japan (GSI) map (~10-m resolution), the ASTER Global Digital Elevation Models (ASTER GDEM version 3) as global land area (~30-m resolution), and the General Bathymetric Chart of the Oceans as bathymetric data (~1000-m resolution). The ASTER Global Water Bodies Database is also used in the data selection process. The GSI provides their DEM in a PNG elevation tile format, and the other data are provided by the Geological Survey of Japan in PNG elevation tile format. We assume the current DEM sea level as 0 m, and the sea level can be changed to an arbitrary integer value (<span style="white-space:nowrap;">&minus;</span>10,000 to 10,000 m). Combining ASTER GDEM for land and GEBCO for sea makes it possible to target DEM of the whole earth. Moreover, it was shown that if a higher resolution DEM is available, it is possible to combine the higher resolution DEM in that area. The combining the PNG elevation tile format with the smart tile architecture demonstrates the possibilities of a client-based web processing service like that of the server-based OGC Web Processing Service.
推荐文章
基于Agent技术的Web-Based Training应用研究
网络在线教育
在线培训系统
Agent智能代理
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
倡导web-based自主学习模式以提高大学生英语听说能力
web-based(基于网络的)
大学英语
自主学习模式
听说能力
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Web-Based Sea Level Change Simulation System Using PNG Elevation Tiles and Smart Tile Architecture
来源期刊 地理信息系统(英文) 学科 医学
关键词 DEM Sea Level PNG Elevation Tile Smart Tile Architecture Web Processing
年,卷(期) 2020,(4) 所属期刊栏目
研究方向 页码范围 291-301
页数 11页 分类号 R68
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
DEM
Sea
Level
PNG
Elevation
Tile
Smart
Tile
Architecture
Web
Processing
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
地理信息系统(英文)
半月刊
2151-1950
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
143
总下载数(次)
0
总被引数(次)
0
论文1v1指导