基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
K-means算法普遍应用在数据聚类分析,然而K-means算法具有不稳定性等缺陷,缺乏有效的降维能力,面对大量高维体检数据时聚类效果不佳.针对该问题,文中提出了一种基于FOA与Autoencoder的聚类改进算法,将K-means算法和Autoencoder模型结合,使用Antoencoder进行数据降维,并采用变步长果蝇优化算法的变减步长策略对Autoencoder的权重和偏移初始化方法进行改进.该算法可提高对健康体检数据聚类分析的准确度和效率,聚类轮廓系数也大幅提升,该算法应用于居民健康状况分析、疾病预测等方面表现出了较高的效率.
推荐文章
一种改进的 DBscan聚类算法
DBscan
核心点
二次聚类
轮廓系数
一种基于密度的分布式聚类改进算法
聚类
分布式
数据挖掘
代表点
一种改进的基于粒子群的聚类算法
聚类算法
粒子群优化算法
相异度矩阵
最大最小距离法
K-means
适应度方差
一种改进的基于密度聚类的入侵检测算法
入侵检测
密度聚类
数据挖掘
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于FOA与Autoencoder改进的聚类算法
来源期刊 河南大学学报(自然科学版) 学科 工学
关键词 聚类分析 K-means Autoencoder 果蝇优化算法 健康体检数据
年,卷(期) 2020,(1) 所属期刊栏目 自动化基础理论与信息技术
研究方向 页码范围 70-79
页数 10页 分类号 TP389.1
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 渠慎明 17 26 2.0 4.0
2 梁胜彬 18 22 3.0 4.0
3 朱斌 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (59)
共引文献  (38)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(1)
  • 二级参考文献(0)
1987(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(10)
  • 参考文献(0)
  • 二级参考文献(10)
2016(10)
  • 参考文献(1)
  • 二级参考文献(9)
2017(7)
  • 参考文献(5)
  • 二级参考文献(2)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
聚类分析
K-means
Autoencoder
果蝇优化算法
健康体检数据
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河南大学学报(自然科学版)
双月刊
1003-4978
41-1100/N
大16开
河南省开封市明伦街85号
36-27
1934
chi
出版文献量(篇)
2535
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导