基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对深度学习训练成本高,以及基于磁共振图像的前列腺癌临床诊断需要大量医学常识且极为耗时的问题,本文提出了一种基于级联卷积神经网络(Convolutional Neural Network,CNN)和磁共振图像的前列腺癌(Prostate Cancer,PCa)自动分类诊断方法,该网络以Faster-RCNN作为前网络,对前列腺区域进行提取分割,用于排除前列腺附近组织器官的干扰;以基于ResNet改进的网络结构CNN40bottleneck作为后网络,用于对前列腺区域病变进行分类.后网络由瓶颈结构串联组成,其中使用批量标准化(Batch Normalization,BN)、全局平均池化(Global Average Pooling,GAP)进行优化.实验结果证明,本文方法对前列腺癌诊断结果较好,而且缩减了训练时间和参数量,有效降低了训练成本.
推荐文章
基于深度学习网络PSP-NET的前列腺MR图像的分割
磁共振成像
前列腺图像分割
网络训练
深度学习
PSP-NET
临床诊断
基于卷积神经网络的军事图像分类
军事图像分类
深度学习
卷积神经网络
主成分分析白化
随机池化
基于卷积神经网络的植物图像分类方法研究
卷积神经网络
图像特征
图像分类
全卷积网络
植物图像
数据集
基于全卷积DenseNet的前列腺MRI分割新方法
前列腺MRI分割
DenseNet
全卷积神经网络
Dice损失函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于级联卷积神经网络的前列腺磁共振图像分类
来源期刊 波谱学杂志 学科 物理学
关键词 磁共振成像(MRI) 级联卷积神经网络(CascadedCNN) 前列腺癌(PCa) 分类
年,卷(期) 2020,(2) 所属期刊栏目 研究论文
研究方向 页码范围 152-161
页数 10页 分类号 O482.53
字数 4060字 语种 中文
DOI 10.11938/cjmr20192717
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (27)
共引文献  (570)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(5)
  • 参考文献(2)
  • 二级参考文献(3)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(7)
  • 参考文献(0)
  • 二级参考文献(7)
2017(8)
  • 参考文献(2)
  • 二级参考文献(6)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
磁共振成像(MRI)
级联卷积神经网络(CascadedCNN)
前列腺癌(PCa)
分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
波谱学杂志
季刊
1000-4556
42-1180/O4
16开
中科院武汉物理与数学研究所(武汉71010号信箱)
38-313
1983
chi
出版文献量(篇)
1492
总下载数(次)
7
总被引数(次)
7081
论文1v1指导