基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Existing methods of vehicle re-identification(ReID)focus on training robust models on the fixed data while ignore the diversity in the training data,which limits generalization ability of the models.In this paper,it proposes an occlusion based discriminative feature mining(ODFM)method for vehicle re-identification,which increases the diversity of the training set by synthesizing occlusion samples,to simulate the occlusion problem in the real scene.To better train the ReID model on the data with large occlusions,an attention mechanism was introduced in the mainstream network to learn the discriminative features for vehicle images.Experimental results on two public ReID datasets,VeRi-776 and VehicleID verify the effectiveness of the proposed method comparing to the state-of-the-art methods.
推荐文章
基于Feature的WEB GIS空间信息共享方案的研究
GIS
WEB GIS
FEATURE
空间信息共享
Assessment of trace metals contamination in stream sediments and soils in Abuja leather mining, sout
Trace metals
Stream sediments
Geoaccumulation index
PCA
Soil
Southwestern Nigeria
Identification of bacterial fossils in marine source rocks in South China
South China
Excellent marine source rocks
Bacterial fossil
Sedimentary environment
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Occlusion Based Discriminative Feature Mining for Vehicle Re-identification
来源期刊 国际计算机前沿大会会议论文集 学科 农学
关键词 Vehicle re-identification OCCLUSION ATTENTION
年,卷(期) 2020,(2) 所属期刊栏目
研究方向 页码范围 246-257
页数 12页 分类号 S51
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Vehicle
re-identification
OCCLUSION
ATTENTION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导