基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
近年来,深度学习技术推动目标检测算法取得了突破式进展.基于深度学习的目标检测算法可分为两阶段检测算法和单阶段检测算法.相比两阶段检测算法,单阶段检测算法的结构简单、计算高效,同时具备不错的检测精度,在实时目标检测领域中具有较高的研究和应用价值.本文首先回顾了单阶段检测算法的发展历史,分析总结了相关算法的优缺点,然后归纳提出了单阶段目标检测算法的通用框架,接着对框架中的特征提取模块和检测器进行了深入分析,指出了其对算法性能的影响,最后对单阶段检测算法的发展趋势进行了展望.
推荐文章
基于锚框的深度学习物体目标检测算法概览
深度学习
卷积神经网络
一阶段检测
二阶段检测
数据集
分类预测
位置回归
锚框
基于深度学习的目标检测算法研究综述
目标检测
深度学习
计算机视觉
期刊_基于深度学习的目标检测技术的研究综述
计算机视觉
深度学习 目标检测
基于深度学习的小目标检测算法综述
目标检测
小目标
深度学习
RCNN
SSD
YOLO
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的单阶段目标检测算法研究综述
来源期刊 航空兵器 学科 工学
关键词 深度学习 单阶段目标检测算法 特征提取 特征融合 anchor 损失函数 人工智能
年,卷(期) 2020,(3) 所属期刊栏目 人工智能基础理论与技术
研究方向 页码范围 44-53
页数 10页 分类号 TJ760|TP18
字数 9350字 语种 中文
DOI 10.12132/ISSN.1673-5048.2019.0100
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孟卫华 20 77 6.0 8.0
3 刘俊明 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (49)
共引文献  (203)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(8)
  • 参考文献(1)
  • 二级参考文献(7)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
单阶段目标检测算法
特征提取
特征融合
anchor
损失函数
人工智能
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
航空兵器
双月刊
1673-5048
41-1228/TJ
大16开
河南省洛阳市030信箱3分箱
1964
chi
出版文献量(篇)
2141
总下载数(次)
10
总被引数(次)
8123
论文1v1指导