基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
With the urbanization,urban transportation has become a key factor restricting the development of a city.In a big city,it is important to improve the efficiency of urban transportation.The key to realize short-term traffic flow prediction is to learn its complex spatial correlation,temporal correlation and randomness of traffic flow.In this paper,the convolution neural network(CNN)is proposed to deal with spatial correlation among different regions,considering that the large urban areas leads to a relatively deep Network layer.First three gated recurrent unit(GRU)were used to deal with recent time dependence,daily period dependence and weekly period dependence.Considering that each historical period data to forecast the influence degree of the time period is different,three attention mechanism was taken into GRU.Second,a twolayer full connection network was applied to deal with the randomness of short-term flow combined with additional information such as weather data.Besides,the prediction model was established by combining these three modules.Furthermore,in order to verify the influence of spatial correlation on prediction model,an urban functional area identification model was introduced to identify different functional regions.Finally,the proposed model was validated based on the history of New York City taxi order data and reptiles for weather data.The experimental results show that the prediction precision of our model is obviously superior to the mainstream of the existing prediction methods.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Lyocell与Model织物风格比较
再生纤维素纤维
Lyocell织物
Model织物
风格特征
Zircon saturation model in silicate melts: a review and update
Zircon
Zircon saturation
Model
Silicate melt
Mafic to silicic melts
Peraluminous to peralkaline compositions
Igneous rocks
Thermometer
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 MCA-TFP Model:A Short-Term Traffic Flow Prediction Model Based on Multi-characteristic Analysis
来源期刊 国际计算机前沿大会会议论文集 学科 经济
关键词 Urban transportation Short-term traffic flow prediction Multi-characteristic analysis MCA-TFP model
年,卷(期) 2020,(2) 所属期刊栏目
研究方向 页码范围 274-289
页数 16页 分类号 F42
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Urban
transportation
Short-term
traffic
flow
prediction
Multi-characteristic
analysis
MCA-TFP
model
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导