基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对自动驾驶场景下的周边车辆及行人等目标的识别和定位问题,提出了一种基于注意力机制的PointPillars+三维目标检测算法.算法将完整空间按等尺寸柱均匀划分,从所有柱中提取内部点云的特征进而生成伪图;引入2种注意力机制,实现对伪图中特征信息的放大和抑制;使用卷积神经网络对注意力模块输出结果进一步处理,并使用SSD(single shot multibox detector)算法进行三维目标检测.结果表明:基于并行注意力机制的PointPillars+检测算法取得了良好的检测效果,相对于PointPillars算法,鸟瞰图下,平均均值精度(mAP)的中等难度均值(mAPm)从66.19增加到69.95,汽车的mAP从86.10增加到87.73;三维模式下,mAP m从59.20增加到62.55,汽车的mAP从74.99增加到76.25.
推荐文章
基于多层次注意力机制一维DenseNet音频事件检测
音频事件检测
深度学习
DenseNet
多层次注意力机制
基于注意力机制的全景分割网络
全景分割
背景类实例重叠
三重态注意力机制
语义增强注意力机制
基于自注意力机制的方面情感分类
方面词
情感分类
自注意力机制
语义编码
具有全局特征的空间注意力机制
卷积神经网络
空间注意力机制
全局特征
特征融合
目标分类
目标检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于注意力机制的PointPillars+三维目标检测
来源期刊 江苏大学学报(自然科学版) 学科 工学
关键词 三维目标 激光雷达 注意力机制 卷积神经网络 点云
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 268-273
页数 6页 分类号 TP391.4
字数 4837字 语种 中文
DOI 10.3969/j.issn.1671-7775.2020.03.004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨彪 常州大学信息科学与工程学院 11 22 2.0 4.0
2 倪蓉蓉 常州纺织服装职业技术学院能源管理科 6 7 2.0 2.0
3 詹为钦 常州大学信息科学与工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
三维目标
激光雷达
注意力机制
卷积神经网络
点云
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
江苏大学学报(自然科学版)
双月刊
1671-7775
32-1668/N
大16开
江苏省镇江市梦溪园巷30号
28-83
1980
chi
出版文献量(篇)
2980
总下载数(次)
2
总被引数(次)
31026
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导