基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Extracting information about emerging events in large study areas through spatiotemporal and textual anal-ysis of geotagged tweets provides the possibility of moni-toring the current state of a disaster.This study proposes dynamic spatio-temporal tweet mining as a method for dynamic event extraction from geotagged tweets in large study areas.It introduces the use of a modified version of ordering points to identify the clustering structure to address the intrinsic heterogeneity of Twitter data.To precisely calculate the textual similarity,three state-of-the-art text embedding methods of Word2vec,GloVe,and FastText were used to capture both syntactic and semantic similarities.The impact of selected embedding algorithms on the quality of the outputs was studied.Different com-binations of spatial and temporal distances with the textual similarity measure were investigated to improve the event detection outcomes.The proposed method was applied to a case study related to 2018 Hurricane Florence.The method was able to precisely identify events of varied sizes and densities before,during,and after the hurricane.The fea-sibility of the proposed method was qualitatively evaluated using the Silhouette coefficient and qualitatively discussed.The proposed method was also compared to an imple-mentation based on the standard density-based spatial clustering of applications with noise algorithm,where it showed more promising results.
推荐文章
An experimental study on dynamic coupling process of alkaline feldspar dissolution and secondary min
Alkaline feldspar
Dissolution rate
Precipitation
Mineral conversion
Secondary porosity
Elemental characteristics and paleoenvironment reconstruction: a case study of the Triassic lacustri
Trace elements
Occurrence mode
Paleoenvironment
Zhangjiatan oil shale
Yanchang Formation
Ordos Basin
Optimizing the ratio of the spike to sample for isotope dilution analysis: a case study with seleniu
Isotope dilution method
Error propagation
Mento Carlo
Se concentration
Geological reference materials
Iron isotope fractionation during fenitization: a case study of carbonatite dykes from Bayan Obo, In
Iron isotopes
Fenitization
Fluid exsolution
Carbonatite
Bayan Obo
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Dynamic Spatio-Temporal Tweet Mining for Event Detection:A Case Study of Hurricane Florence
来源期刊 国际灾害风险科学学报(英文版) 学科
关键词
年,卷(期) 2020,(3) 所属期刊栏目 ARTICLES
研究方向 页码范围 378-393
页数 16页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (31)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(6)
  • 参考文献(6)
  • 二级参考文献(0)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(7)
  • 参考文献(7)
  • 二级参考文献(0)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
国际灾害风险科学学报(英文版)
季刊
2095-0055
11-5970/N
16开
北京市
2010
eng
出版文献量(篇)
272
总下载数(次)
0
期刊文献
相关文献
推荐文献
论文1v1指导