基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统的铸件缺陷检测不能对缺陷进行分类分级等问题,提出了一种基于Mask R-CNN的铸件X射线DR图像缺陷检测算法.首先对原始图像进行预处理,采用引导滤波进行图像平滑,平滑图像与原图像进行差分得到差分图像,将差分图像与平滑图像相加运算使图像增强,再利用Labelme进行图像标注,形成训练数据集.送入Mask R-CNN深度学习网络,通过特征提取网络生成建议区域,分类、回归网络生成边界框和掩码,经多次参数调节后得到训练网络模型,最后测试数据集.实验数据结果表明,气泡1~5级的检测率分别为:66.7%,71.4%,77.4%,88.9%,87.5%;疏松1~5级检测率为:62.5%,72.2%,77.1%,83.3%,81.1%.检测结果证明应用Mask R-CNN结合引导滤波增强方法的缺陷检测方法可以较好的实现对铸件X射线DR图像的缺陷检测的分级分类,为工业铸件缺陷检测提供了应用深度学习方法的解决方案.
推荐文章
基于Mask R-CNN的葡萄叶片实例分割
MaskR-CNN
实例分割
复杂背景
天气条件
葡萄叶片
基于Mask R-CNN的机场地面保护区航空器识别研究
跑道侵入
Mask R-CNN
航空器识别
摄像头
基于改进Mask R-CNN的绝缘子目标识别方法
卷积神经网络
目标识别
开运算
绝缘子
应用GAN和Faster R-CNN的色织物缺陷识别
色织物
图像扩充
生成对抗网络
FasterR-CNN
缺陷识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Mask R-CNN的铸件X射线DR图像缺陷检测研究
来源期刊 仪器仪表学报 学科 工学
关键词 Mask R-CNN 深度学习 铸件缺陷 引导滤波 实例分割
年,卷(期) 2020,(3) 所属期刊栏目 检测技术
研究方向 页码范围 61-69
页数 9页 分类号 TP391.41|TH878+.1
字数 语种 中文
DOI 10.19650/j.cnki.cjsi.J1905908
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 沈宽 3 5 1.0 2.0
2 蔡彪 2 1 1.0 1.0
3 付金磊 1 0 0.0 0.0
4 张理泽 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (91)
共引文献  (62)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(6)
  • 参考文献(0)
  • 二级参考文献(6)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(7)
  • 参考文献(1)
  • 二级参考文献(6)
2015(11)
  • 参考文献(2)
  • 二级参考文献(9)
2016(12)
  • 参考文献(1)
  • 二级参考文献(11)
2017(14)
  • 参考文献(4)
  • 二级参考文献(10)
2018(6)
  • 参考文献(3)
  • 二级参考文献(3)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Mask R-CNN
深度学习
铸件缺陷
引导滤波
实例分割
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
仪器仪表学报
月刊
0254-3087
11-2179/TH
大16开
北京市东城区北河沿大街79号
2-369
1980
chi
出版文献量(篇)
12507
总下载数(次)
27
论文1v1指导