针对高精度伺服机构压装质量控制难度大的问题,提出了一种基于离群数据检测和线性回归的智能质量预警方法.采用线性回归分析装配质量与压装过程之间的关系,建立了压装的"位移-力"数学模型,并定义了合格的压装力范围对装配质量进行控制.为了对压装过程中的"位移-力"原始数据集进行预处理,本文设计了一种改进的基于区域密度和P权值的局部离群因子(Local outlier factor based on area density and P weight,LAOPW)检测算法,以剔除导致线性回归数学模型不准确的离群值.该算法引入了基于信息熵的加权距离进行距离度量,并用P权值代替可达距离.实验结果表明,该算法在检测效率上比传统的局部离群因子(Local outlier fac-tor,LOF)算法提高了5.6 ms,而检测准确率比基于区域密度的局部离群因子(Local outlier factor based on area density,LAOF)算法改善了2%左右.将本文提出的LAOPW算法和线性回归模型应用于高精度伺服机构压装质量控制,能够有效进行压装质量智能预警.