基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着大数据技术在应用层面的日渐普及,机器学习、深度学习相关算法在金融风控行业的应用得到了积极的探索。本文基于开源的信用卡数据(该数据具有样本比例极度不平衡的特点),比较不同采样方法对类别不平衡数据分类结果的影响,并应用集成学习算法Stacking融合多个基分类器训练数据,得到更为稳健的分类模型,有效避免了过拟合现象的发生。
推荐文章
不平衡数据的集成分类算法综述
不平衡数据
集成学习
分类
代价敏感
数据采样
面向不平衡数据分类的KFDA-Boosting算法
核费希尔判别分析
集成学习
不平衡数据
分类
基于样本投影分布的平衡不平衡数据集分类
平衡不平衡数据集
样本投影分布
支持向量机
支持向量数据描述
不平衡数据集的分类方法研究
机器学习
不平衡数据
数据分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Stacking算法实现信贷不平衡数据分类
来源期刊 数据挖掘 学科 工学
关键词 样本不平衡数据 集成学习 STACKING
年,卷(期) 2020,(4) 所属期刊栏目
研究方向 页码范围 254-260
页数 7页 分类号 TP3
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄浩 11 44 4.0 6.0
2 郑利沙 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
样本不平衡数据
集成学习
STACKING
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据挖掘
季刊
2163-145X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
140
总下载数(次)
1
论文1v1指导