作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The study evaluates the effect of climate change on temperature, which is one of the most important variables in water resources management and irrigation scheduling. Climate prediction is necessary in the agricultural and hydrological analysis. This study proposed an approach to the application of the Long Ashton Research Station Weather Generator (LARS-WG) in Coupled Model Inter-comparison Project Phase 5 (CMIP5) under EC-Earth and MPI-ESM-MR. The first step is model calibration, where the observed dataset is analyzed statistically. In the second stage, the synthetic data and observed data are checked for Kolmogorov-Smirnov and the means and standard deviations. In order to evaluate the response of temperature under future warmer climate trends, the approach was assessed using data series. These parameters consisted of the minimum and maximum temperature at the Phitsanulok Meteorological Station (WMO Index 48378) and RCP4.5 climate change scenario for the base period as well as for 2021-2040 (the near future), 2041-2060 (the medium future) and 2061-2080 (the far future). The results of the numerical applications indicated that the linkage between the observed data spatially downscaled from LARS-WG simulations with the historical one of the locations during the baseline period had a very good accuracy. It was also found that the future climate change of temperature contributed to higher change. The mean of minimum temperature in the baseline year was 23.13<span style="white-space:nowrap;">&deg;</span>C while the mean of minimum temperature in the projection period for 2021-2040, 2041-2060 and 2061-2080 is expected to be 24.09 (+4.18%), 24.49 (+5.94%) and 24.82 (+7.36%)<span style="white-space:nowrap;">&deg;</span>C, and 24.12 (+4.32%), 24.82 (+7.36%) and 25.08 (+8.48%)<span style="white-space:nowrap;">&deg;</span>C for the EC-Earth and MPI-ESM-MR, respectively. While, the mean of maximum temperature in the baseline year was 33.41<span style="white-space:nowrap;">&deg;</span>C, the maximum temperatures are projec
推荐文章
LARS-WG天气发生器在黄土高原的适应性研究
LARS-WG
天气发生器
适应性评价
黄土高原
Organic geochemistry of the Lower Permian Tak Fa Formation in Phetchabun Province, Thailand: implica
Biomarker
Depositional environment
Source inputs
Tak Fa Formation
Khao Khwang Platform
A re-assessment of nickel-doping method in iron isotope analysis on rock samples using multi-collect
Fe isotope
Ni-doping
Stable isotope
Precision and accuracy
Mass bias correction
Pseudo-high mass resolution
Forest carbon storage in Guizhou Province based on field measurement dataset
Forest carbon storage
Field measurement dataset
Karst landform
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Forecasting the Future Temperature Using a Downscaling Method by LARS-WG Stochastic Weather Generator at the Local Site of Phitsanulok Province, Thailand
来源期刊 大气和气候科学(英文) 学科 经济
关键词 LARS-WG CMIP5 Climate Change DOWNSCALING TEMPERATURE
年,卷(期) dqhqhkxyw_2020,(4) 所属期刊栏目
研究方向 页码范围 538-552
页数 15页 分类号 F42
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
LARS-WG
CMIP5
Climate
Change
DOWNSCALING
TEMPERATURE
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
大气和气候科学(英文)
季刊
2160-0414
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
426
总下载数(次)
0
论文1v1指导