基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着大数据时代的到来,海量数据不断涌现,从中寻找有用信息,抽取对应知识的需求变得越来越强烈。针对该需求,知识图谱技术应运而生,并在实现知识互联的过程中日益发挥重要作用。信息抽取作为构建知识图谱的基础技术,实现了从大规模数据中获取结构化的命名实体及其属性或关联信息。同时,由于具有多样化的实现方法,扩充了信息抽取技术的应用领域和场景,也提升了对信息抽取技术研究的价值和必要性的认可度。本文首先以知识图谱的构建框架为背景。探讨信息抽取研究的意义;然后从MUC、ACE和ICDM三个国际测评会议的角度回顾信息抽取的发展历史;接着,基于面向限定域和开放域两个方面,介绍信息抽取的关键技术,包括实体抽取技术、关系抽取技术和属性抽取技术。
推荐文章
轨迹图谱:一种基于知识图谱结构的轨迹信息抽取方法
轨迹数据
轨迹图谱
轨迹挖掘
轨迹查询
知识图谱
面向企业知识图谱构建的中文实体关系抽取
企业知识图谱
实体关系抽取
最大熵模型
基于知识图谱的Web信息抽取系统
知识图谱
多领域
Web信息抽取
网页自动标注
容错
包装器归纳框架
无人系统故障知识图谱的构建方法及应用
知识图谱
无人系统
维修保障
自然语言处理
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 面向知识图谱的信息抽取
来源期刊 数据挖掘 学科 工学
关键词 知识图谱 信息抽取 实体抽取 关系抽取 开放域
年,卷(期) 2020,(4) 所属期刊栏目
研究方向 页码范围 282-302
页数 21页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
知识图谱
信息抽取
实体抽取
关系抽取
开放域
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据挖掘
季刊
2163-145X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
140
总下载数(次)
1
总被引数(次)
0
论文1v1指导