基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Knot theory is a branch of topology in pure mathematics, however, it has been increasingly used in different sciences such as chemistry. Mathematically, a knot is a subset of three-dimensional space which is homeomorphic to a circle and it is only defined in a closed loop. In chemistry, knots have been applied to synthetic molecular design. Mathematics and chemistry together can work to determine, characterize and create knots which help to understand different molecular designs and then forecast their physical features. In this study, we provide an introduction to the knot theory and its topological concepts, and then we extend it to the context of chemistry. We present parametric representations for several synthetic knots. The main goal of this paper is to develop a geometric and topological intuition for molecular knots using parametric equations. Since parameterizations are non-unique;there is more than one set of parametric equations to specify the same molecular knots. This parametric representation can be used easily to express geometrically molecular knots and would be helpful to find out more complicated molecular models.
推荐文章
Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quali
Groundwater
Multivariate analysis
Geostatistical modeling
Geochemical modeling
Mineralization
Ordinary Kriging
Isotherm and kinetic studies on the adsorption of humic acid molecular size fractions onto clay mine
Kaolinite
Montmorillonite
Leonardite humic acid
Humic acid fractions
Kinetics
Equilibrium
Determination of brominated diphenyl ethers in atmospheric particulate matter using selective pressu
Brominated diphenyl ethers
Atmospheric particulate matters
Selective pressurised liquid extraction
Gas chromatography-mass spectrometry
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Using Parametric Mathematical Modeling to Develop a Geometric and Topological Intuition for Molecular Knots
来源期刊 应用数学(英文) 学科 数学
关键词 Synthetic Molecular Knots Parametric Equations Topology and Knot Theory Trefoil Knot
年,卷(期) 2020,(6) 所属期刊栏目
研究方向 页码范围 460-472
页数 13页 分类号 O18
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Synthetic
Molecular
Knots
Parametric
Equations
Topology
and
Knot
Theory
Trefoil
Knot
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用数学(英文)
月刊
2152-7385
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1878
总下载数(次)
0
总被引数(次)
0
论文1v1指导