基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Intent-Based Networks(IBNs),which are originally proposed to introduce Artificial Intelligence(AI)into the sixth-generation(6G)wireless networks,can effectively solve the challenges of traditional networks in terms of efficiency,flexibility,and security.IBNs are mainly used to transform users’business intent into network configuration,operation,and maintenance strategies,which are prominent for designing the AI-enabled 6G networks.In particular,in order to meet the massive,intelligent service demands and overcome the time-varying radio propagation,IBNs can continuously learn and adapt to the time-varying network environment based on the massive collected network data in real-time.From the aspects of both the core network and radio access network,this article comprehensively surveys the architectures and key techniques of IBNs for 6G.In particular,the demonstration platforms of IBNs,such as the Apstra Operating System,Forward Networks Verification Platform,and One Convergence Service Interaction Platform,are presented.Moreover,the industrial development of IBNs is elaborated,including the emerging new products and startups to solve the problems of open data platforms,automated network operations,and preemptive network fault diagnosis.Finally,several open issues and challenges are identified as well to spur future researches.
推荐文章
6G——搭建多维感知与信息融合网络
6G
移动通信技术
多维感知
新闻传播
通感算融合
移动智联语境下6G传播的场景建构
移动智联
6G传播
场景建构
智能化
技术革命
基于6G网络的元宇宙应用技术研究
元宇宙
6G
沉浸式
虚拟世界
物理世界
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Intent-based networks for 6G:Insights and challenges
来源期刊 数字通信与网络:英文版 学科 工学
关键词 Intent-based networks(IBNs) The sixth-generation wireless networks(6G) Artificial intelligence(AI)
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 270-280
页数 11页 分类号 TN9
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Intent-based
networks(IBNs)
The
sixth-generation
wireless
networks(6G)
Artificial
intelligence(AI)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数字通信与网络:英文版
季刊
2468-5925
50-1212/TN
重庆南岸区崇文路2号重庆邮电大学数字通信
78-45
出版文献量(篇)
11481
总下载数(次)
2
总被引数(次)
0
论文1v1指导