As an optical material,Y2O3 transparent ceramics are desirable for application as laser host materials.However,it is difficult to sinter and dense of Y2O3 hinders the preparation of high-quality optical ceramics via traditional processes.In this work,we use La2O3 as a sintering aid for fabricating high-transparency Y2O3 ceramics using a vacuum sintering process.It is demonstrated that the in-line optical transmittance of 15.0 at% La-doped Y2O3 at a wavelength of 1100 nm achieves a transmittance of 81.2%.A sintering kinetics analysis reveals that a grain-boundary-diffusion-controlled mechanism dominates the faster densification at high La3+ concentrations.It is also shown that both the mechanical and thermal properties of Y2O3 transparent ceramics are significantly improved upon the increase of La2O3 sintering additives.The results indicate that a La-doped Y2O3 transparent ceramic is a promising candidate for a laser host material.