基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Modeling the spatial distribution of soil heavy metals is important in determining the safety of contaminated soils for agricultural use. This study utilized 60 topsoil samples (0 - 30 cm), multispectral images (Sentinel-2), spectral indices, and ancillary data to model the spatial distribution of heavy metals in the soils along the Nairobi River. The model was generated using the Random Forest package in R. Using R2 to assess the prediction accuracy, the Random Forest model generated satisfactory results for all the elements. It also ranked the variables in order of their importance in the overall prediction. Spectral indices were the most important variables within the rankings. From the predicted topsoil maps, there were high concentrations of Cadmium on the easterly end of the river. Cadmium is an impurity in detergents, and this section is in close proximity to the Nairobi water sewerage plant, which could be a direct source of Cadmium. Some farms had Zinc levels which were above the World Health Organization recommended limit. The Random Forest model performed satisfactorily. However, the predictions can be improved further if the spatial resolutions of the various variables are increased and through the addition of more predictor variables.
推荐文章
Spatial analysis of carbon storage density of mid-subtropical forests using geostatistics: a case st
Carbon storage density
Geostatistics
Mid-subtropical forests
Spatial autocorrelation
Spatial heterogeneity
Geochemical distribution, fractionation, and sources of heavy metals in dammed-river sediments: the
Heavy metals
Fractionation
210Pb dating
Smelting and mining activities
Sediment cores
The Longjiang River
Distribution and ecological risks of heavy metals in Lake Hussain Sagar, India
Trace metals
Lake sediment
Geochemistry
Speciation
Industrial effluents
Idol immersion
Distribution and partitioning of heavy metals in large anthropogenically impacted river, the Pearl R
Pearl River
Water and sediment
Heavy metals
Partitioning
Distribution
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Modeling the Spatial Distribution of Soil Heavy Metals Using Random Forest Model—A Case Study of Nairobi and Thirirka Rivers’ Confluence
来源期刊 地理信息系统(英文) 学科 农学
关键词 Random Forest Sentinel 2 Heavy Metals Spectral Indices Spatial Modeling
年,卷(期) 2020,(6) 所属期刊栏目
研究方向 页码范围 597-619
页数 23页 分类号 S15
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Random
Forest
Sentinel
2
Heavy
Metals
Spectral
Indices
Spatial
Modeling
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
地理信息系统(英文)
半月刊
2151-1950
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
143
总下载数(次)
0
总被引数(次)
0
期刊文献
相关文献
推荐文献
论文1v1指导