基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This study proposes a classification model of equipment fault diagnosis based on integrated incremental learning mechanism on the basis of characteristics of industrial equipment status data.The model first proposes a dynamic weight combination classification model based on long short-term memory(LSTM)and support vector machine(SVM).It solved the problem of fault feature extraction and classification in high noise equipment state data.Then,in this model,integrated incremental learning mechanism and unbalanced data processing technology were introduced to solve problems of massive unbalanced new data feature extraction and classification and sample category imbalance under equipment status data.Finally,an equipment fault diagnosis classification model based on integrated incremental dynamic weight combination is formed.Experiments prove that the model can effectively overcome the problems of excessive data volume,unbalanced,high noise,and inability to correlate data samples in the process of equipment fault diagnosis.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Research on Equipment Fault Diagnosis Classification Model Based on Integrated Incremental Dynamic Weight Combination
来源期刊 国际计算机前沿大会会议论文集 学科 地球科学
关键词 Neural network Support Vector Machine Integrated increment Unbalanced data processing Fault diagnosis
年,卷(期) 2020,(2) 所属期刊栏目
研究方向 页码范围 475-489
页数 15页 分类号 P31
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Neural
network
Support
Vector
Machine
Integrated
increment
Unbalanced
data
processing
Fault
diagnosis
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导