基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Road accidents are one of the most relevant causes of injuries and death worldwide,and therefore,they constitute a significant field of research on the use of advanced algorithms and techniques to analyze and predict traffic accidents and determine the most relevant elements that contribute to road accidents.The research of road accident prediction aims to respond to the challenge of offer tools to generate a more secure mobility environment,and ultimately,save lives.This paper aims to provide an overview of the state of the art in the prediction of road accidents through machine learning algorithms and advanced techniques for analyzing information,such as convolutional neural networks and long short-term memory networks,among other deep learning architectures.Furthermore,in this article,a compendium and study of the most used data sources for the road accident forecast is made.And a classification is proposed according to its origin and characteristics,such as open data,measurement technologies,onboard equipment and social media data.For the analysis of the information,the different algorithms employed to make predictions about road accidents are listed and compared,as well as their applicability depending on the types of data being analyzed,along with the results obtained and their ease of interpretation and analysis.The best results reported by the authors are obtained when two or more analytic techniques are combined,in such a way that analysis of the obtained results is strengthened.Among the future challenges in road traffic forecasting lies the enhancement of the scope of the proposed models and predictions by the incorporation of heterogeneous data sources,that include geo spatial data,information from traffic volume,traffic statistics,video,sound,text and sentiment from social media,that many authors concur that can improve the precision and accuracy of the analysis and predictions.
推荐文章
Diffusion in garnet: a review
High temperature and high pressure
Diffusion
Garnet
Point defects
A review of geoanalytical databases
Database
Geochemistry
Geology
Geoanalysis
Information system
FORECAST模型的原理、方法和应用
森林生态学
FORECAST模型
森林生态系统
森林管理
趋势预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Modern data sources and techniques for analysis and forecast of road accidents: A review
来源期刊 交通运输工程学报(英文版) 学科
关键词
年,卷(期) 2020,(4) 所属期刊栏目 Review articles
研究方向 页码范围 432-446
页数 15页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (37)
共引文献  (1)
参考文献  (43)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1784(3)
  • 参考文献(0)
  • 二级参考文献(3)
1840(1)
  • 参考文献(0)
  • 二级参考文献(1)
1953(1)
  • 参考文献(0)
  • 二级参考文献(1)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(4)
  • 参考文献(2)
  • 二级参考文献(2)
2011(5)
  • 参考文献(3)
  • 二级参考文献(2)
2012(4)
  • 参考文献(2)
  • 二级参考文献(2)
2013(8)
  • 参考文献(2)
  • 二级参考文献(6)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(9)
  • 参考文献(6)
  • 二级参考文献(3)
2016(11)
  • 参考文献(5)
  • 二级参考文献(6)
2017(8)
  • 参考文献(8)
  • 二级参考文献(0)
2018(5)
  • 参考文献(5)
  • 二级参考文献(0)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
交通运输工程学报(英文版)
双月刊
2095-7564
61-1494/U
eng
出版文献量(篇)
296
总下载数(次)
0
论文1v1指导