基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Recommendation-aware Content Caching(RCC)at the edge enables a significant reduction of the network latency and the backhaul load,thereby invigorating ubiquitous latency-sensitive innovative services.However,the effectiveness of RCC strategies is highly dependent on explicit information as regards subscribers’content request patterns,the sophisticated caching placement policy,and the personalized recommendation tactics.In this article,we investigate how the potentials of Artificial Intelligence(AI)and optimization techniques can be harnessed to address those core issues and facilitate the full implementation of RCC for the upcoming intelligent 6G era.Towards this end,we first elaborate on the hierarchical RCC network architecture.Then,the devised AI and optimization empowered paradigm is introduced,whereas AI and optimization techniques are leveraged to predict the users’content preferences in real-time situations with the assistance of their historical behavior data and determine the cache pushing and recommendation decision,respectively.Through extensive case studies,we validate the effectiveness of AI-based predictors in estimating users’content preference and the superiority of optimized RCC policies over the conventional benchmarks.At last,we shed light on the opportunities and challenges in the future.
推荐文章
6G——搭建多维感知与信息融合网络
6G
移动通信技术
多维感知
新闻传播
通感算融合
移动智联语境下6G传播的场景建构
移动智联
6G传播
场景建构
智能化
技术革命
基于6G网络的元宇宙应用技术研究
元宇宙
6G
沉浸式
虚拟世界
物理世界
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 On recommendation-aware content caching for 6G:An artificial intelligence and optimization empowered paradigm
来源期刊 数字通信与网络:英文版 学科 医学
关键词 Artificial intelligence Content caching Optimization techniques RECOMMENDATION 6G
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 304-311
页数 8页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Artificial
intelligence
Content
caching
Optimization
techniques
RECOMMENDATION
6G
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数字通信与网络:英文版
季刊
2468-5925
50-1212/TN
重庆南岸区崇文路2号重庆邮电大学数字通信
78-45
出版文献量(篇)
11481
总下载数(次)
2
总被引数(次)
0
论文1v1指导