基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Automated segmentation of histopathological images is a challenging task to detect cancerous cells in breast tissue.Recent reviews state high accuracy to segment image,but depends on user input,say window area size,time steps,level set,magnification factor and so on.To extract the region of interest effectively,the subject expert performs post-processing operations several times on the segmentation results with different input values for different parameters say,area opening,fill holes and selects most appropriate enhanced image required for further analysis.The authors proposed an automated segmentation technique followed by self-driven post-processing operations to detect cancerous cells effectively.The post-processing method itself determines the value of different parameters for different operations based on segmented results obtained.The proposed technique has the following features:(i)technique is context sensitive;(ii)no prior setting of time step,weighted area coefficient parameters is required;(iii)magnification independent;(iv)post-processing operations are self-driven which enhance segmentation results adaptively.The experimental results are compared with four state-of-the-art techniques:fuzzy C-means,spatial fuzzy C-means,spatial neutrosophic distance regularised level set and convolutional neural network-based PangNet.Experimental results obtained on two publicly available data sets show that the proposed technique outperforms effectively.
推荐文章
乳腺癌认知问卷(Breast-CAM)的汉化及信效度检验
乳腺癌
乳腺癌认知问卷
汉化
信度
效度
测评工具
翻译
专家咨询
一种基于用户行为的Self集构造和演化方法
计算机免疫
演化计算
计算机安全
入侵检测
近临界压力区Post-dryout传热特性分析
近临界压力区
Post-dryout区
传热关系式
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Automated segmentation technique with self-driven post-processing for histopathological breast cancer images
来源期刊 智能技术学报 学科 工学
关键词 operations IMAGE SEGMENTATION
年,卷(期) 2020,(4) 所属期刊栏目
研究方向 页码范围 294-300
页数 7页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
operations
IMAGE
SEGMENTATION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能技术学报
季刊
2468-2322
重庆市巴南区红光大道69号
出版文献量(篇)
142
总下载数(次)
4
总被引数(次)
0
论文1v1指导