基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Nowadays, crop diseases are a crucial problem to the world’s food supplies, in a world where the population count is around 7 billion people, with more than 90% not getting access to the use of tools or features that would identify and solve the problem. At present, we live in a world dominated by technology on a significant scale, major network coverage, high-end smart-phones, as long as there are great discoveries and improvements in AI. The combination of high-end smart-phones and computer vision via Deep Learning has made possible what can be defined as “smartphone-assisted disease diagnosis”. In the area of Deep Learning, multiple architecture models have been trained, some achieving performance reaching more than 99.53% [1]. In this study, we evaluate CNN’s architectures applying transfer learning and deep feature extraction. All the features obtained will also be classified by SVM and KNN. Our work is feasible by the use of the open source Plant Village Dataset. The result obtained shows that SVM is the best classifier for leaf’s diseases detection.
推荐文章
Soil organic carbon dynamics study bias deduced from isotopic fractionation in corn plant
Bias of SOC dynamics study
Isotopic fractionation in corn
Isotope mass balance equation
Bias range
基于Plant Simulation的离散制造系统仿真研究
离散制造系统
建模仿真
系统仿真
仿真模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Plant Disease Detection with Deep Learning and Feature Extraction Using Plant Village
来源期刊 电脑和通信(英文) 学科 工学
关键词 Plant Diseases Detection Feature Extraction Transfer Learning SVM KNN
年,卷(期) 2020,(6) 所属期刊栏目
研究方向 页码范围 10-22
页数 13页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Plant
Diseases
Detection
Feature
Extraction
Transfer
Learning
SVM
KNN
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
总被引数(次)
0
论文1v1指导