基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
With the advent of the era of big data and the development and construction of smart campuses,the campus is gradually moving towards digitalization,networking and informationization.The campus card is an important part of the construction of a smart campus,and the massive data it generates can indirectly reflect the living conditions of students at school.In the face of the campus card,how to quickly and accurately obtain the information required by users from the massive data sets has become an urgent problem that needs to be solved.This paper proposes a data mining algorithm based on K-Means clustering and time series.It analyzes the consumption data of a college student’s card to deeply mine and analyze the daily life consumer behavior habits of students,and to make an accurate judgment on the specific life consumer behavior.The algorithm proposed in this paper provides a practical reference for the construction of smart campuses in universities,and has important theoretical and application values.
推荐文章
Application of K-means and PCA approaches to estimation of gold grade in Khooni district (central Ir
K-means method
Clustering
Principal
component analysis (PCA)
Estimation
Gold
Khooni district
k-means算法的研究与改进
聚类
划分方法
数据样本
阈值
基于Spark的并行K-means算法研究
Spark
K-means
PSO
迭代计算
基于变异的k-means聚类算法
聚类
mk-means算法
变异
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Campus Economic Analysis Based on K-Means Clustering and Hotspot Mining
来源期刊 教育理论综述(英文) 学科 工学
关键词 Machine learning K-Means clustering Data mining Consumer behavior Campus economy Economic regionalization
年,卷(期) 2020,(2) 所属期刊栏目
研究方向 页码范围 42-50
页数 9页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Machine
learning
K-Means
clustering
Data
mining
Consumer
behavior
Campus
economy
Economic
regionalization
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
教育理论综述(英文)
季刊
2591-7633
12 Eu Tong Sen Stree
出版文献量(篇)
160
总下载数(次)
4
总被引数(次)
0
论文1v1指导