基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Purpose:We present an analytical,open source and flexible natural language processing and text mining method for topic evolution,emerging topic detection and research trend forecasting for all kinds of data-tagged text.Design/methodology/approach:We make full use of the functions provided by the open source VOSviewer and Microsoft Office,including a thesaurus for data clean-up and a LOOKUP function for comparative analysis.Findings:Through application and verification in the domain of perovskite solar cells research,this method proves to be effective.Research limitations:A certain amount of manual data processing and a specific research domain background are required for better,more illustrative analysis results.Adequate time for analysis is also necessary.Practical implications:We try to set up an easy,useful,and flexible interdisciplinary text analyzing procedure for researchers,especially those without solid computer programming skills or who cannot easily access complex software.This procedure can also serve as a wonderful example for teaching information literacy.Originality/value:This text analysis approach has not been reported before.
推荐文章
Identification of bacterial fossils in marine source rocks in South China
South China
Excellent marine source rocks
Bacterial fossil
Sedimentary environment
Diagenetic evolution of clastic reservoirs and its records in fine subsection: significance and appl
Tight sandstone reservoirs
Diagenetic evolution
Fine subsection
Significance
The contribution of bacteria to organic matter in coal-measure source rocks
Coal-measure source rocks
Organic matter type
Bacteria
Monomethyl alkanes
Alkyl cyclohexane
Hydrogeochemical processes and multivariate analysis for groundwater quality in the arid Maadher reg
Groundwater quality
Hydrogeochemical processes
Multivariate analysis
Salinity
Mio-Plio
Quaternary aquifer
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Topic Evolution and Emerging Topic Analysis Based on Open Source Software
来源期刊 数据与情报科学学报:英文版 学科 工学
关键词 Topic evolution Emerging topics Text mining THESAURUS VOSviewer
年,卷(期) 2020,(4) 所属期刊栏目
研究方向 页码范围 126-136
页数 11页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Topic
evolution
Emerging
topics
Text
mining
THESAURUS
VOSviewer
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据与情报科学学报:英文版
季刊
2096-157X
10-1394/G2
北京市中关村北四环西路33号
82-563
出版文献量(篇)
445
总下载数(次)
1
总被引数(次)
0
论文1v1指导