基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统BP神经网络模型存在的学习速度慢、易陷入局部极值以及网络结构参数取值的不确定性等问题,该文研究了一种基于遗传算法与BP神经网络相结合的GPS可降水量预测的新方法.该方法利用遗传算法对BP神经网络的初始权值和阈值进行优化,并对该模型进行训练,以提高预测模型的性能.实验结果证明了遗传BP神经网络模型用于GPS可降水量预测的可行性,其预测结果的均方根误差为0.16 mm、平均绝对百分误差为0.23%.相对于BP神经网络和小波神经网络模型,均方根误差分别降低了0.37和0.19 mm,平均绝对百分误差分别降低了0.62%和0.33%.同时遗传BP神经网络模型亦显示了很好的非线性拟合能力,能更好地预测GPS可降水量,对实际工作具有较强的参考价值.
推荐文章
基于GA-BP神经网络的城市用水量预测
城市用水
用水量预测
BP神经网络
预测建模
网络训练
仿真分析
基于GA-BP神经网络算法的马铃薯晚疫病预测模型
马铃薯晚疫病
遗传算法
BP神经网络
归一化处理
基于GA-BP神经网络的电力系统负荷预测研究
电力系统
负荷预测
BP神经网络
遗传算法
GA-BP
基于GA-BP神经网络的粗粒土渗透系数预测
粗粒土
渗透系数
BP神经网络
遗传算法
孔隙比
级配
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 GA-BP神经网络的GPS可降水量预测
来源期刊 测绘科学 学科 地球科学
关键词 BP神经网络 遗传算法 GPS可降水量 预测
年,卷(期) 2020,(3) 所属期刊栏目 大地测量学与导航
研究方向 页码范围 33-38
页数 6页 分类号 P457.6|P228.9
字数 语种 中文
DOI 10.16251/j.cnki.1009-2307.2020.03.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 谢劭峰 桂林理工大学测绘地理信息学院 27 97 6.0 8.0
5 赵云 桂林理工大学测绘地理信息学院 6 14 2.0 3.0
7 李国弘 桂林理工大学测绘地理信息学院 5 1 1.0 1.0
9 周志浩 桂林理工大学测绘地理信息学院 5 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (96)
共引文献  (48)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(7)
  • 参考文献(0)
  • 二级参考文献(7)
2012(14)
  • 参考文献(2)
  • 二级参考文献(12)
2013(12)
  • 参考文献(2)
  • 二级参考文献(10)
2014(10)
  • 参考文献(0)
  • 二级参考文献(10)
2015(10)
  • 参考文献(2)
  • 二级参考文献(8)
2016(6)
  • 参考文献(0)
  • 二级参考文献(6)
2017(6)
  • 参考文献(2)
  • 二级参考文献(4)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(2)
  • 参考文献(0)
  • 二级参考文献(2)
2020(1)
  • 参考文献(0)
  • 二级参考文献(1)
2020(1)
  • 参考文献(0)
  • 二级参考文献(1)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BP神经网络
遗传算法
GPS可降水量
预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测绘科学
月刊
1009-2307
11-4415/P
大16开
北京市海淀区北太平路16号
2-945
1976
chi
出版文献量(篇)
7258
总下载数(次)
36
总被引数(次)
67354
论文1v1指导