原文服务方: 计算机应用研究       
摘要:
针对传统关联规则挖掘算法无法高效且准确地挖掘出隐含于用户操作记录中的时序关联操控习惯,提出一种基于FP-Growth的智能家居用户时序关联操控习惯挖掘算法.该算法分为三个阶段,分别为基于用户操控动作森林、改进的FP-Growth算法和一种时间约束规则进行事务集的生成、时序频繁项集的生成以及最终时序关联操控习惯的生成.最后,使用真实用户操控记录进行对比实验,结果表明该算法能提高生成事务集的效率,并能更准确地发现用户操控家居设备的时序关联习惯.
推荐文章
基于FP-growth算法的关联规则获取研究
关联规则
FP-growth算法
税负分析
基于改进FP-growth的用户兴趣推荐算法的设计与实现
推荐系统
FP-growth
关联规则挖掘
冷启动
基于Hadoop的FP-Growth关联规则并行改进算法
FP-Growth算法
Hadoop
数据分割
负载均衡
基于Spark框架的FP-Growth大数据频繁项集挖掘算法
大数据
频繁项集挖掘
Spark框架
FP-Growth算法
垂直布局
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于FP-Growth的智能家居用户时序关联操控习惯挖掘方法
来源期刊 计算机应用研究 学科
关键词 智能家居 行为预测 数据挖掘 关联分析 个性化推荐
年,卷(期) 2020,(2) 所属期刊栏目 算法研究探讨
研究方向 页码范围 385-389
页数 5页 分类号 TP301.6
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2018.07.0527
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 曾碧 广东工业大学计算机学院 106 646 12.0 19.0
2 刘建圻 广东工业大学自动化学院 6 49 2.0 6.0
3 梁天恺 广东工业大学计算机学院 3 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (186)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(9)
  • 参考文献(2)
  • 二级参考文献(7)
2013(12)
  • 参考文献(2)
  • 二级参考文献(10)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(4)
  • 参考文献(2)
  • 二级参考文献(2)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(4)
  • 参考文献(0)
  • 二级参考文献(4)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
智能家居
行为预测
数据挖掘
关联分析
个性化推荐
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
论文1v1指导