基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
风电功率短期预测是风电调度运行的基础之一,物理预测方法是风电短期功率预测的基本方法之一,在欧美等国家仍作为主要预测方法,分析风电功率物理预测方法的误差源对提升预测精度具有重要作用.针对风电功率物理预测方法的误差来源问题,在分解物理预测关键环节的基础上,分别从物理模型、地转拖曳定律、数值天气预报(NWP)风速、风速-功率转化等方面,采用单一变量原则研究了各环节误差探明方案,通过物理过程推导,提出了一种面向风电功率物理预测模型的误差源分析方法,获得了物理预测方法各环节引入预测误差的量化结果.采用实际算例进行测试的结果显示,所提出的误差源分析方法能够获得误差源量化分析结果,且分析结果与实际相符,验证了方法的准确性.
推荐文章
基于ARMA的风电功率预测
风力发电
ARMA
风电功率预测
风电机组
风电发电功率预测模型改进研究
风电发电
功率预测
优化控制
PID
基于自回归滑动平均模型的风电功率预测
风电功率
自回归滑动平均模型
风电预测
基于CS-SVR模型的短期风电功率预测
功率预测
布谷鸟搜索算法
支持向量回归机
参数寻优
异常数据剔除
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 风电功率物理预测模型引入误差量化分析方法
来源期刊 电力系统自动化 学科
关键词 风电功率预测 物理预测方法 预测误差来源 误差来源量化
年,卷(期) 2020,(8) 所属期刊栏目 学术研究
研究方向 页码范围 57-65
页数 9页 分类号
字数 8830字 语种 中文
DOI 10.7500/AEPS20191224003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 牛东晓 华北电力大学经济与管理学院 306 6130 40.0 64.0
2 纪会争 华北电力大学经济与管理学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (136)
共引文献  (368)
参考文献  (22)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1968(1)
  • 参考文献(1)
  • 二级参考文献(0)
1975(1)
  • 参考文献(1)
  • 二级参考文献(0)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(9)
  • 参考文献(0)
  • 二级参考文献(9)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(13)
  • 参考文献(1)
  • 二级参考文献(12)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(9)
  • 参考文献(0)
  • 二级参考文献(9)
2011(26)
  • 参考文献(0)
  • 二级参考文献(26)
2012(10)
  • 参考文献(0)
  • 二级参考文献(10)
2013(24)
  • 参考文献(3)
  • 二级参考文献(21)
2014(9)
  • 参考文献(2)
  • 二级参考文献(7)
2015(10)
  • 参考文献(1)
  • 二级参考文献(9)
2016(9)
  • 参考文献(1)
  • 二级参考文献(8)
2017(8)
  • 参考文献(7)
  • 二级参考文献(1)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
风电功率预测
物理预测方法
预测误差来源
误差来源量化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电力系统自动化
半月刊
1000-1026
32-1180/TP
大16开
江苏省南京市江宁区诚信大道19号
28-40
1977
chi
出版文献量(篇)
12334
总下载数(次)
31
总被引数(次)
449556
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导