基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对直接采用BP神经网络反演水深收敛速度慢,且易陷入局部最优的问题,提出了一种基于粒子群(PSO)优化BP神经网络的水深遥感新模型.该模型首先利用粒子群算法对BP神经网络的权重和阈值进行优化,然后将该优化值作为BP神经网络的初始值,最后再将PSO优化后的模型用于测试海区的反演精度评估.实验结果表明,该模型的网络收敛速度明显加快,水深反演的精度也得到提高.
推荐文章
基于粒子群优化神经网络的卫星故障预测方法
故障预测
卫星
粒子群优化
神经网络
时间序列
基于改进粒子群优化算法的神经网络设计
粒子群算法
蚁群算法
信息素
神经网络设计
基于粒子群优化BP神经网络的脉象识别方法
脉象识别
粒子群算法
输出误差
误差反向传播算法
神经网络
泛化能力
基于粒子群算法优化神经网络的电子音乐分类模型
电子音乐分类模型
神经网络优化
数据收集
特征提取
多特征融合
分类结果输出
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子群优化神经网络的水深反演模型
来源期刊 海洋测绘 学科 地球科学
关键词 海洋遥感 水深反演 多光谱影像 粒子群优化 BP神经网络 权重阈值优化
年,卷(期) 2020,(5) 所属期刊栏目 学术研究
研究方向 页码范围 26-29
页数 4页 分类号 P237
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (78)
共引文献  (127)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1978(2)
  • 参考文献(0)
  • 二级参考文献(2)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(2)
  • 参考文献(0)
  • 二级参考文献(2)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(1)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(2)
  • 二级参考文献(2)
2006(8)
  • 参考文献(0)
  • 二级参考文献(8)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(8)
  • 参考文献(2)
  • 二级参考文献(6)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(7)
  • 参考文献(2)
  • 二级参考文献(5)
2013(5)
  • 参考文献(2)
  • 二级参考文献(3)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(3)
  • 参考文献(2)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
海洋遥感
水深反演
多光谱影像
粒子群优化
BP神经网络
权重阈值优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
海洋测绘
双月刊
1671-3044
12-1343/P
大16开
天津市河西区友谊路40号
1981
chi
出版文献量(篇)
2577
总下载数(次)
13
总被引数(次)
16787
论文1v1指导