基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Uncertainty identification is an important semantic processing task.It is crucial to the quality of information in terms of factuality in many applications,such as topic detection and question answering.Factuality has become a premier concern especially in social media,in which texts are written informally.However,existing approaches that rely on lexical cues suffer greatly from the casual or word-of-mouth peculiarity of social media,in which the cue phrases are often expressed in substandard form or even omitted from sentences.To tackle these problems,this paper proposes an Attention-based Neural Framework for Uncertainty identification on social media texts,named ANFU.ANFU incorporates attention-based Long Short-Term Memory (LSTM) networks to represent the semantics of words and Convolutional Neural Networks (CNNs) to capture the most important semantics.Experiments were conducted on four datasets,including 2 English benchmark datasets used in the CoNLL-2010 task of uncertainty identification and 2 Chinese datasets of Weibo and Chinese news texts.Experimental results showed that our proposed ANFU approach outperformed the-state-of-the-art on all the datasets in terms of F1 measure.More importantly,41.37% and 13.10% improvements were achieved over the baselines on English and Chinese social media datasets,respectively,showing the particular effectiveness of ANFU on social media texts.
推荐文章
期刊_丙丁烷TDLAS测量系统的吸收峰自动检测
带间级联激光器
调谐半导体激光吸收光谱
雾剂检漏 中红外吸收峰 洛伦兹光谱线型
期刊_联合空间信息的改进低秩稀疏矩阵分解的高光谱异常目标检测
高光谱图像
异常目标检测 低秩稀疏矩阵分解 稀疏矩阵 残差矩阵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 An Attention-Based Neural Framework for Uncertainty Identification on Social Media Texts
来源期刊 清华大学学报自然科学版(英文版) 学科
关键词
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 117-126
页数 10页 分类号
字数 语种 英文
DOI 10.26599/TST.2019.9010022
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
清华大学学报自然科学版(英文版)
双月刊
1007-0214
11-3745/N
16开
北京市海淀区双清路学研大厦B座908
1996
eng
出版文献量(篇)
2269
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导