作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对高光谱图像特征利用不足的问题,提出了一种新的基于空谱联合特征的高光谱图像分类方法.该方法首先利用主成分分析(Principal Component Analysis,PCA)和线性判别分析(Linear Discriminant Analysis,LDA)对高光谱图像进行组合降维;其次引入Gabor核,设计了一种基于Gabor核的卷积(Local Gabor Convolutional,LGC)层;最后基于LGC层设计了一个新的卷积神经网络(Local Gabor Convolutional Neural Network,LGCNN)进行分类.在Indian Pines和Salinas Scene数据集上对所提方法进行验证,并将其与其他经典分类方法进行比较.实验结果表明,该方法不仅能大幅度减少可学习的参数,降低模型复杂度,而且具备较好的分类性能,其总体精度达到99%,平均分类精度达到98%以上,Kappa系数达到98%以上.
推荐文章
基于加权K近邻和卷积神经网络的高光谱图像分类
高光谱图像分类
K近邻
卷积神经网络
基于卷积神经网络的植物图像分类方法研究
卷积神经网络
图像特征
图像分类
全卷积网络
植物图像
数据集
高光谱图像与卷积神经网络相结合的油桃轻微损伤检测
油桃
卷积神经网络
轻微损伤检测
颜色特征
图像分块
基于卷积神经网络的军事图像分类
军事图像分类
深度学习
卷积神经网络
主成分分析白化
随机池化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 面向高光谱图像分类的局部Gabor卷积神经网络
来源期刊 计算机科学 学科 工学
关键词 高光谱图像分类 Gabor滤波 空间-光谱信息 卷积神经网络 深度学习
年,卷(期) 2020,(6) 所属期刊栏目 计算机图形&多媒体
研究方向 页码范围 151-156
页数 6页 分类号 TP751.1
字数 4830字 语种 中文
DOI 10.11896/jsjkx.190500147
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王丽 兰州理工大学计算机与通信学院 12 140 7.0 11.0
2 王燕 兰州理工大学计算机与通信学院 61 433 12.0 17.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (68)
共引文献  (5)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(10)
  • 参考文献(0)
  • 二级参考文献(10)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高光谱图像分类
Gabor滤波
空间-光谱信息
卷积神经网络
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学
月刊
1002-137X
50-1075/TP
大16开
重庆市渝北区洪湖西路18号
78-68
1974
chi
出版文献量(篇)
18527
总下载数(次)
68
论文1v1指导