作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对装备故障预测存在有效样本少、模型预测精度低等问题,集成灰色理论和神经网络方法,提出基于灰色神经网络的故障预测组合模型.基于新信息优先原理和重构背景值方法优化灰色GM (1 ,1)模型的初始值与背景值,利用Levenberg‐M arquardt算法改进反向传播神经网络模型;采用组合预测思想,将多方法融合改进灰色模型和神经网络模型,分别构建基于权重分配、基于误差修正和基于结构优化的3种灰色神经网络组合模型.以某雷达发射机的故障预测为例,验证上述方法在故障预测中的有效性.结果表明,灰色神经网络组合模型的预测精度优于单一预测模型,可用于装备的故障预测和预测性维修.
推荐文章
AFSA优化灰色神经网络的某电源组合故障预测
AFSA
灰色神经网络
电源组合
故障预测
基于改进灰色神经网络的故障预测方法研究
故障预测
预测与健康管理
灰色神经网络模型
附加动量变学习速率法
改进灰色神经网络
证券市场灰色神经网络组合预测模型应用研究
神经网络
灰色理论
灰色神经网络
组合预测
证券市场
边坡位移预测组合灰色神经网络方法
灰色模型
组合灰色神经网络
边坡位移
预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于灰色神经网络组合模型的故障预测
来源期刊 系统工程与电子技术 学科 工学
关键词 故障预测 灰色模型 神经网络 组合模型
年,卷(期) 2020,(1) 所属期刊栏目 可靠性
研究方向 页码范围 238-244
页数 7页 分类号 TB114.3
字数 5797字 语种 中文
DOI 10.3969/j.issn.1001‐506X.2020.01.32
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 苏春 东南大学机械工程学院 87 933 20.0 25.0
2 黄魁 东南大学机械工程学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (51)
共引文献  (67)
参考文献  (21)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(5)
  • 参考文献(2)
  • 二级参考文献(3)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(7)
  • 参考文献(1)
  • 二级参考文献(6)
2013(4)
  • 参考文献(2)
  • 二级参考文献(2)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2015(7)
  • 参考文献(6)
  • 二级参考文献(1)
2016(11)
  • 参考文献(1)
  • 二级参考文献(10)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
故障预测
灰色模型
神经网络
组合模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
系统工程与电子技术
月刊
1001-506X
11-2422/TN
16开
北京142信箱32分箱
82-269
1979
chi
出版文献量(篇)
10512
总下载数(次)
24
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导