基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
With the continuous increase of solar penetration rate, it has brought challenges to the smooth operation of the power grid. Therefore, to make photovoltaic power generation not affect the smooth operation of the grid, accurate photovoltaic power prediction is required. And short-term forecasting is essential for the deployment of daily power generation plans. In this paper, A short-term photovoltaic power generation forecast method based on K-means++, grey relational analysis (GRA) and support vector regression (SVR) (Hybrid Kmeans-GRA-SVR, HKGSVR) was proposed. The historical power data was clustered through the multi-index K-means++ algorithm. And the similar days and the nearest neighbor similar day of the prediction day were selected by the GRA algorithm. Then, similar days and nearest neighbor similar days were used to train SVR to obtain an accurate photovoltaic power prediction model. Under ideal weather, the average values of MAE, RMSE, and R<sup>2</sup> were 0.8101 kW, 0.9608 kW, and 99.66%, respectively. The average computation time was 1.7487 s, which was significantly better than the SVR model. Thus, the demonstrated numerical results verify the effectiveness of the proposed model for short-term PV power prediction.
推荐文章
A re-assessment of nickel-doping method in iron isotope analysis on rock samples using multi-collect
Fe isotope
Ni-doping
Stable isotope
Precision and accuracy
Mass bias correction
Pseudo-high mass resolution
Distribution and assessment of hydrogeochemical processes of F-rich groundwater using PCA model: a c
Fluoride
Groundwater chemistry
PCA model
Hydrogeochemical processes
Yuncheng Basin
基于PCA-PSO-SVR的PV型旋风分离器粒级效率建模
PV 型旋风分离器
支持向量回归算法
粒子群优化
粒级效率建模
主元分析法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Short-Term PV Power Forecasting Method Using a Hybrid Kmeans-GRA-SVR Model under Ideal Weather Condition
来源期刊 电脑和通信(英文) 学科 工学
关键词 Grey Relational Analysis K-Means++ Nearest Neighbor Similar Day Photovoltaic Power Support Vector Regression
年,卷(期) 2020,(11) 所属期刊栏目
研究方向 页码范围 102-119
页数 18页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Grey
Relational
Analysis
K-Means++
Nearest
Neighbor
Similar
Day
Photovoltaic
Power
Support
Vector
Regression
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
总被引数(次)
0
论文1v1指导