基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
蝗虫是常见的害虫之一,对农作物和生态系统具有很大的危害,采用常规的方法对蝗虫进行监测存在一定局限性,为了有效应用海量野外影像数据实现对蝗虫实时监测,本文建立了一种基于深度学习网络的蝗虫自动识别模型.利用手机模拟摄像头获取的内蒙古锡林浩特附近草原的280张蝗虫的RGB图像,采用深度学习算法中的Faster R-CNN(Faster Region-based Convolutional Neural Network)网络结构建立了蝗虫识别模型.经验证该模型的精确度为0.756,可以较准确地将蝗虫从野外复杂环境中识别出来,与以往同类研究相比,在识别结果和实用性方面均有较大的进步.该模型是建立蝗虫实时监测系统的基础,可以为蝗虫的防治提供辅助信息,同时该网络结构还可以应用于其他害虫的识别,具有较强的推广性,拓宽了深度学习算法的应用领域.
推荐文章
基于DRN和Faster R-CNN融合模型的行为识别算法
行为识别
扩张残差网络
Faster R-CNN
基于Faster R-CNN的蓝莓冠层果实检测识别分析
蓝莓
冠层果实
FasterR-CNN
精准识别
产量预估
不同成熟度
基于Faster R-CNN的服务机器人物品识别研究
服务机器人
深度学习
Faster R-CNN
物品识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Faster R-CNN的野外环境中蝗虫快速识别
来源期刊 气象与环境学报 学科 农学
关键词 蝗虫 深度学习 识别 FasterR-CNN
年,卷(期) 2020,(6) 所属期刊栏目 快报
研究方向 页码范围 137-143
页数 7页 分类号 TP391.41|S433.2
字数 语种 中文
DOI 10.3969/j.issn.1673-503X.2020.06.017
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 房世波 47 914 18.0 29.0
2 武英洁 3 1 1.0 1.0
3 Piotr Chudzik 1 0 0.0 0.0
4 Simon Pearson 1 0 0.0 0.0
5 Bashir Al-Diri 1 0 0.0 0.0
6 冯旭宇 1 0 0.0 0.0
7 李云鹏 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (80)
共引文献  (15)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1955(1)
  • 参考文献(0)
  • 二级参考文献(1)
1956(2)
  • 参考文献(0)
  • 二级参考文献(2)
1958(3)
  • 参考文献(0)
  • 二级参考文献(3)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(6)
  • 参考文献(0)
  • 二级参考文献(6)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(6)
  • 参考文献(2)
  • 二级参考文献(4)
2016(8)
  • 参考文献(2)
  • 二级参考文献(6)
2017(4)
  • 参考文献(2)
  • 二级参考文献(2)
2018(11)
  • 参考文献(3)
  • 二级参考文献(8)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
蝗虫
深度学习
识别
FasterR-CNN
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
气象与环境学报
双月刊
1673-503X
21-1531/P
大16开
沈阳市和平区长白南路388号
1984
chi
出版文献量(篇)
2198
总下载数(次)
5
总被引数(次)
19938
论文1v1指导