基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对强地物静止杂波及慢速杂波严重环境下,慢速运动目标被淹没其中而无法有效检测的问题,本文设计了一种基于K-均值聚类的SVD杂波抑制方法.该方法对回波信号矩阵进行奇异值分解,依据回波信号特性,得到相应的奇异值谱分布,以及奇异向量的空间相关性和平均多普勒频率三个统计量特征,然后基于这些特征采用K-均值聚类算法对各奇异分量进行聚类,无需人为设定阈值参数估计杂波基,可以自适应确定杂波子空间所对应的奇异向量,最后通过正交子空间投影来抑制回波信号中的杂波成分.实验结果表明,该方法在低信杂比条件下相比于传统子空间方法,能够得到较好杂波抑制效果.
推荐文章
基于差分演化的K-均值聚类算法
聚类
差分演化算法
K-均值
基于层次的K-均值聚类
聚类
代价函数
层次
K-均值聚类
基于核聚类的K-均值聚类
核聚类
K-均值聚类
径向基函数(RBF)
支持向量机(SVM)
基于半监督学习的K-均值聚类算法研究
半监督聚类
改进的K-均值算法
动态管理种群的粒子群算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于K-均值聚类的SVD杂波抑制算法
来源期刊 雷达科学与技术 学科 工学
关键词 杂波抑制 奇异值分解 K-均值聚类 慢速运动目标检测
年,卷(期) 2020,(6) 所属期刊栏目
研究方向 页码范围 611-617
页数 7页 分类号 TN957.51
字数 语种 中文
DOI 10.3969/j.issn.1672-2337.2020.06.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郑霖 70 176 6.0 9.0
2 杨超 28 71 5.0 6.0
3 刘争红 23 63 5.0 6.0
4 邓小芳 23 57 4.0 6.0
5 黄凤青 1 0 0.0 0.0
6 扶明 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (80)
共引文献  (18)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(7)
  • 参考文献(1)
  • 二级参考文献(6)
2012(7)
  • 参考文献(0)
  • 二级参考文献(7)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(11)
  • 参考文献(0)
  • 二级参考文献(11)
2015(13)
  • 参考文献(1)
  • 二级参考文献(12)
2016(10)
  • 参考文献(1)
  • 二级参考文献(9)
2017(12)
  • 参考文献(2)
  • 二级参考文献(10)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
杂波抑制
奇异值分解
K-均值聚类
慢速运动目标检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
雷达科学与技术
双月刊
1672-2337
34-1264/TN
大16开
安徽省合肥市9023信箱60分箱
2003
chi
出版文献量(篇)
1971
总下载数(次)
3
总被引数(次)
10892
论文1v1指导