基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对乳腺癌病理图像的自动分类问题,提出基于深度学习的分类算法.通道重校准模型是作用于特征通道的注意力模型,可以利用学习到的通道权重对无用特征进行抑制来实现对特征通道的重校准,以达到更高的分类准确率.为了使通道重校准的结果更加准确,提出多尺度通道重校准模型,设计卷积神经网络msSE-ResNet.多尺度特征通过网络中的最大池化层获得并作为后续通道重校准模型的输入,将不同尺度下学到的通道权重进行融合,可以改善通道重校准的结果.该实验在公开数据集BreaKHis上开展.实验结果表明,该网络对良性/恶性乳腺病理图像分类任务达到88.87%的分类精度,可以对不同放大倍数下获取的病理图像具有较好的鲁棒性.
推荐文章
基于级联分类器的乳腺癌病理学图像中有丝分裂检测
级联分类器
乳腺癌
病理图
有丝分裂检测
颜色直方图
基于深度学习的乳腺癌病理图像分类研究综述
计算机辅助诊断
乳腺癌病理图像
图像分类
深度学习
基于深度学习的乳腺癌病理图像自动分类
乳腺癌病理图像分类
深度学习
卷积神经网络
迁移学习
数据增强
基于卷积神经网络和迁移学习的乳腺癌病理图像分类
乳腺癌病理图像
卷积神经网络
图像分块
多数投票算法
迁移学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多尺度通道重校准的乳腺癌病理图像分类
来源期刊 浙江大学学报(工学版) 学科 工学
关键词 乳腺癌病理图像分类 深度学习 残差网络 多尺度特征 通道重校准模型
年,卷(期) 2020,(7) 所属期刊栏目 自动化技术、计算机技术
研究方向 页码范围 1289-1297
页数 9页 分类号 TP391
字数 6171字 语种 中文
DOI 10.3785/j.issn.1008-973X.2020.07.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郭继昌 天津大学电气自动化与信息工程学院 77 735 14.0 24.0
2 李锵 天津大学微电子学院 74 624 12.0 22.0
3 王丹 天津医科大学总医院病理科 28 110 5.0 9.0
4 明涛 天津大学电气自动化与信息工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
乳腺癌病理图像分类
深度学习
残差网络
多尺度特征
通道重校准模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(工学版)
月刊
1008-973X
33-1245/T
大16开
杭州市浙大路38号
32-40
1956
chi
出版文献量(篇)
6865
总下载数(次)
6
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导