基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
现有的遥感影像地物提取方法大多是利用人工设定特征或神经网络全监督学习特征检测,前者适用范围较小,后者适用范围较大但需要大量标签.为减少影像标签绘制成本和提高在少量有标签数据下网络的检测精度,本文提出一种新的网络组合构建生成对抗网络,并将其结合半监督学习首次应用到遥感领域进行影像地物检测.文中首先采用选择合适的生成网络和鉴别网络构建生成对抗网络;然后采用有标签数据和无标签数据交替训练网络,根据网络性能选择设置最优参数.本文采用ISPRS提供的vaihingen地区高分辨率航空影像进行实验,结果表明,本文提出的网络组合结合半监督学习可以有效提高检测精度.
推荐文章
基于生成式对抗网络的遥感图像半监督语义分割
高分辨率遥感图像
语义分割
深度学习
生成式对抗网络
损失函数
基于条件的边界平衡生成对抗网络
生成对抗网络
条件特征
边界平衡
图像生成
基于生成对抗网络的半监督遥感图像飞机检测
半监督学习
生成对抗网络
目标检测
基于可变损失和流形正则化的生成对抗网络
生成对抗网络
局部扰动
可变损失
流形正则化
半监督
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于半监督生成对抗网络的遥感影像地物语义分割
来源期刊 测绘与空间地理信息 学科 地球科学
关键词 遥感影像 生成对抗网络 半监督 神经网络
年,卷(期) 2020,(4) 所属期刊栏目 基金项目专栏
研究方向 页码范围 36-39
页数 4页 分类号 P231
字数 2802字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 邹峥嵘 中南大学地球科学与信息物理学院 158 1385 19.0 29.0
2 何帅帅 中南大学地球科学与信息物理学院 3 0 0.0 0.0
3 耿艳磊 中南大学地球科学与信息物理学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (14)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
遥感影像
生成对抗网络
半监督
神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测绘与空间地理信息
月刊
1672-5867
23-1520/P
大16开
哈尔滨市南岗区测绘路32号
14-5
1978
chi
出版文献量(篇)
11361
总下载数(次)
46
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
湖南省自然科学基金
英文译名:Natural Science Foundation of Hunan Province
官方网址:http://jj.hnst.gov.cn/
项目类型:一般面上项目
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导