基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了有效解决建筑垃圾预测问题,从有限样本点的单变量时序数据出发,提出一种基于3层长短期记忆(LSTM)网络的时间序列预测方法,涉及Dropout层与网络结构设计、网络训练与预测过程实现算法等.并以上海市建筑垃圾统计数据为例进行数值实验,通过与其他时间序列预测模型的实验对比,验证了LSTM预测模型在建筑垃圾产量预测的有效性和准确性.
推荐文章
基于长短期记忆网络的社区演化预测
动态网络
社区演化预测
长短期记忆网络
基于长短期记忆网络的锂电池循环寿命预测
锂电池
长短期记忆
循环寿命
预测
基于长短期记忆神经网络的风力发电 功率预测方法
深度学习
时序预测
风力发电
长短期记忆神经网络
基于长短期记忆神经网络的罗非鱼生长预测模型
罗非鱼
长短期记忆神经网络模型
生长模型
预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于长短期记忆网络的城市建筑垃圾产量预测
来源期刊 华东交通大学学报 学科 交通运输
关键词 建筑垃圾 LSTM网络 时间序列预测 深度学习
年,卷(期) 2020,(6) 所属期刊栏目 交通基础设施
研究方向 页码范围 28-35
页数 8页 分类号 U294.1+3|TU993.3
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (11)
参考文献  (18)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(9)
  • 参考文献(1)
  • 二级参考文献(8)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(4)
  • 参考文献(4)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
建筑垃圾
LSTM网络
时间序列预测
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华东交通大学学报
双月刊
1005-0523
36-1035/U
大16开
中国南昌
1984
chi
出版文献量(篇)
3963
总下载数(次)
12
总被引数(次)
24304
论文1v1指导