作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目标检测是基于视觉的目标定位关键技术.针对现有车轮检测方法对环境敏感问题,本文提出一种并联式融合循环神经网络和Faster R-CNN的车轮检测模型FusionRNN,借助RNN能够处理时序和CNN能够提取空间域隐性特征的优点,可提高实时性,减少参数量,使模型表达能力更强,同时具备分析序列化向量间语义关系和识别车轮几何特征的能力.该模型能在由激光雷达扫描得到的车轮三维点云投影图中准确检测出车轮位置,为基于AGV自动停车系统搬运车辆提供准确稳定的车辆位置信息.
推荐文章
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
基于卷积神经网络多层特征融合的目标跟踪
目标跟踪
特征融合
特征表达
目标定位
卷积神经网络
回归模型
基于卷积神经网络的行人目标检测系统设计
卷积神经网络
行人目标
检测系统
CNN框架
目标传感器
训练文件
访问接口
复用加速结构
基于卷积神经网络的肺炎检测系统
卷积神经网络
胸部X光影像
肺炎诊断
图像预处理
VGG
特征提取
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合卷积神经网络和循环神经网络的车轮目标检测
来源期刊 测绘通报 学科 地球科学
关键词 智能车库 车轮检测 循环神经网络 卷积神经网络 激光雷达
年,卷(期) 2020,(8) 所属期刊栏目 技术交流
研究方向 页码范围 139-143
页数 5页 分类号 P208
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 马超 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (91)
共引文献  (94)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(13)
  • 参考文献(1)
  • 二级参考文献(12)
2015(15)
  • 参考文献(0)
  • 二级参考文献(15)
2016(14)
  • 参考文献(0)
  • 二级参考文献(14)
2017(14)
  • 参考文献(1)
  • 二级参考文献(13)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
智能车库
车轮检测
循环神经网络
卷积神经网络
激光雷达
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测绘通报
月刊
0494-0911
11-2246/P
大16开
北京西城区三里河路50号
2-223
1955
chi
出版文献量(篇)
8030
总下载数(次)
39
论文1v1指导