基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了降低图像特征向量量化的近似表示和高维向量带来的码书训练时间开销,提出了一种投影增强型残差量化方法.在前期的增强型残差量化工作基础上,将主成分分析与增强型残差量化相结合,使得码书训练和特征量化均在低维向量空间进行以提高效率;在低维向量空间上训练码书过程中,提出了联合优化方法,同时考虑投影和量化产生的总体误差,提升码书精度;针对该量化方法,设计了一种特征向量之间的近似欧氏距离快速计算方法用于近似最近邻完全检索.结果表明,相比增强型残差量化,在相同检索精度前提条件下,投影增强型残差量化的只需花费近1/3的训练时间;相比其它同类方法,所提出方法在码书训练时间效率、检索速度和精度上均具有更优的综合性能.该研究为主成分分析同其它量化模型的有效结合提供了参考.
推荐文章
基于投影残差量化哈希的近似最近邻搜索
投影残差量化哈希
大规模搜索
近似最近邻搜索
编码权重
多阶段量化
基于SURF和快速近似最近邻搜索的图像匹配算法
图像匹配
快速近似邻近点搜索
加速鲁棒特征
改进的样本一致性
双向匹配
基于最近邻量化距离聚类的残差中心聚合图像表示
图像表示
聚合局部描述子向量
聚类
残差中心聚合
图像检索
基于SURF和快速近似最近邻搜索的图像匹配算法
图像匹配
快速近似邻近点搜索
加速鲁棒特征
改进的样本一致性
双向匹配
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 近似最近邻搜索中投影增强型残差量化方法
来源期刊 激光技术 学科 工学
关键词 图像处理 向量量化 近似最近邻 图像检索
年,卷(期) 2020,(6) 所属期刊栏目 光通信与光信息技术
研究方向 页码范围 742-748
页数 7页 分类号 TP391
字数 语种 中文
DOI 10.7510/jgjs.issn.1001-3806.2020.06.017
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 艾列富 7 17 2.0 4.0
2 冯学军 9 62 3.0 7.0
3 程宏俊 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (66)
共引文献  (4)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1948(1)
  • 参考文献(0)
  • 二级参考文献(1)
1966(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(3)
  • 参考文献(0)
  • 二级参考文献(3)
1984(2)
  • 参考文献(0)
  • 二级参考文献(2)
1985(2)
  • 参考文献(0)
  • 二级参考文献(2)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(6)
  • 参考文献(2)
  • 二级参考文献(4)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(9)
  • 参考文献(2)
  • 二级参考文献(7)
2017(5)
  • 参考文献(2)
  • 二级参考文献(3)
2018(1)
  • 参考文献(0)
  • 二级参考文献(1)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像处理
向量量化
近似最近邻
图像检索
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
激光技术
双月刊
1001-3806
51-1125/TN
大16开
四川省成都市238信箱
62-74
1971
chi
出版文献量(篇)
4090
总下载数(次)
10
论文1v1指导