摘要:
利用太阳能光电解水反应制氢为解决能源危机和环境问题提供了一条途径,是目前研究的热点方向.目前研究较多的一种光阳极材料是α-Fe2O3,其禁带宽度窄(2.0–2.2 eV),水稳定性高且天然丰度高.但是,Fe2O3的导带位置低于水还原电极电势,而且Fe2O3表面存在大量的表面态,造成费米能级"钉扎"效应,使其开启电压高达0.8–1.0 V.大量研究表明,在Fe2O3表面负载水氧化助催化剂可以有效降低其开启电压,但多数研究集中于采用单一催化剂,提升效率有限.已有采用双助催化剂提升Fe2O3光电效率的研究报道,但是对其协同作用原理解释不清晰.更重要的是,双助催化剂的性质选择没有一致性规律,这给复合型助催化剂的研究带来了不确定性.本文研究了Co-Pi与FeOOH对Fe2O3光阳极的协同作用原理.分别通过浸涂法和水热法制备了两种FeOOH,在得到的FeOOH/Fe2O3光阳极表面通过光电化学方法制备Co–Pi薄膜.采用电化学阻抗谱表征和电化学动力学分析,重点研究两种FeOOH与Co-Pi形成复合助催化剂对Fe2O3光阳极开启电压的协同作用原理及差异,旨在指导双助催化剂的复合方案. X射线衍射(XRD)和高分辨透射电镜(HRTEM)表征结果表明,浸涂法得到的FeOOH为无定形薄膜(记为d-FeOOH),水热法得到的FeOOH为颗粒状的结晶β-FeOOH(记为h-FeOOH).采用X射线光电子能谱(XPS)和扫描电镜(SEM)元素面扫证明了Co-Pi的成功负载.H-FeOOH/Fe2O3比d-FeOOH/Fe2O3具有更高的电化学活性表面积.从极化曲线可以看出,Co-Pi/h-FeOOH双助催化剂使Fe2O3的开启电压降低了270 mV,而Co-Pi/d-FeOOH仅能使其降低170 mV,并且Co-Pi/h-FeOOH/Fe2O3的光电流有明显提升.因此,Co-Pi与h-FeOOH产生了显著的协同作用,但是与d-FeOOH的协同作用很弱.莫特-肖特基(Mott-Schottky)和紫外光电子能谱(UPS)证明h-FeOOH与Fe2O3之间形成了P-N结,提升了载流子浓度,增强了电极导电性.开路电压(OCP)测试证明了FeOOH负载后Fe2O3表面形成了新的表面态,该表面态位置更负,因此使Fe2O3的开启电压提升.光电化学阻抗谱(EIS)测试结果表明,Co-Pi和h-FeOOH复合之后表面空穴捕获能力显著提升,同时伴随着电阻下降,而Co-Pi和d-FeOOH复合之后对表面电容和电阻的影响不大.通过动力学分析可知,Co-Pi/h-FeOOH/Fe2O3光阳极表面空穴转化速率有所提升,同时电荷复合速率显著下降.综上所述,Co-Pi/h-FeOOH的协同效应主要归因于h-FeOOH/Fe2O3之间P-N结的形成显著抑制了表面电荷复合,其次是由于颗粒状的h-FeOOH与Co-Pi之间具有更大的接触表面.然而,Co-Pi/d-FeOOH/Fe2O3阳极中的非晶薄层FeOOH仅作为空穴传输介质,对电荷转化动力学的促进作用较弱.