基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
以股票涨跌趋势预测精度为评价指标,针对传统股票数据特征训练过程中预测精度不高的情况,考虑引入两种不同的向量化策略对股民评论、新闻关键词等文本信息进行非结构化数据特征的捕捉,利用词意的积极、消极程度对客观因素进行处理,进而将向量化后的特征作为新的非线性特征项扩充原有的结构化特征集合.文中分别以词向量化和句向量化为出发点设计两种启发式的SVM分类器,其目标是在拟合每支股票的情况下尽可能预测出其未来的走势,挖掘出更具有增长潜力的股票样本.经过2018年6月至12月半年沪市股票数据集的实验结果表明,相比于词向量化策略,采用句向量化策略设计的SVM分类器不仅能够更好地预测股票涨跌,并且能够更有效地挑选出潜在增长的股票样本.
推荐文章
一种新的基于SVM权重向量的云分类器
支持向量机
云模型
云分类器
交叉验证
国外两种免费DEM数据对比分析
DEM
SRTM
ASTER GDEM
免费
两种PM10观测仪器数据对比分析
振荡天平
β射线
PM10
两种油水旋流分离器的数值模拟对比分析
污水处理
旋流分离器
同向出流
双锥
速度
压力
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 两种基于向量化策略SVM分类器的对比分析
来源期刊 计算机技术与发展 学科 工学
关键词 向量化策略 非结构化数据 SVM分类器 启发式算法
年,卷(期) 2020,(2) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 37-41
页数 5页 分类号 TP18
字数 4274字 语种 中文
DOI 10.3969/j.issn.1673-629X.2020.02.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王官中 伦敦玛丽女王大学商务与金融学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (103)
共引文献  (1072)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1904(1)
  • 参考文献(0)
  • 二级参考文献(1)
1938(1)
  • 参考文献(0)
  • 二级参考文献(1)
1963(1)
  • 参考文献(0)
  • 二级参考文献(1)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(9)
  • 参考文献(0)
  • 二级参考文献(9)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(14)
  • 参考文献(0)
  • 二级参考文献(14)
2006(6)
  • 参考文献(1)
  • 二级参考文献(5)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(11)
  • 参考文献(0)
  • 二级参考文献(11)
2009(13)
  • 参考文献(1)
  • 二级参考文献(12)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
向量化策略
非结构化数据
SVM分类器
启发式算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导