基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对深海生物识别问题采用基于区域的全卷积网络(R-FCN)模型对海洋生物进行识别,以实现潜水器水下视频信息识别的目的.为了提升模型的训练速度,对潜水器的视频数据进行裁剪和转换,利用数据筛选去除噪声图像来提高模型的准确性,最后采用模型的预学习来提高模型的训练质量.该技术在TensorFlow框架上使用基于R-FCN的识别模型对海参、海胆等深海生物进行识别,平均检测准确率在98%以上,达到了预期的识别效果.
推荐文章
改进R-FCN的船舶识别方法
深度学习
目标检测
区域全卷积网络(R-FCN)
基于R-FCN的行人检测方法研究
基于区域的全卷积网络(R-FCN)
遮挡
背景混淆干扰
二次分类
基于STM32的深海生物取样监控系统设计
深海生物取样
实时监控
可视监控
一种改进的基于R-FCN模型的人脸检测算法
人脸检测
深度学习
目标检测
全卷积网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于R-FCN模型的深海生物识别技术
来源期刊 电子测量技术 学科 工学
关键词 目标检测 深度学习 TensorFlow 全卷积神经网络
年,卷(期) 2020,(3) 所属期刊栏目 信息技术及图像处理
研究方向 页码范围 158-161
页数 4页 分类号 TP311
字数 语种 中文
DOI 10.19651/j.cnki.emt.1903194
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (99)
共引文献  (82)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(7)
  • 参考文献(0)
  • 二级参考文献(7)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(9)
  • 参考文献(1)
  • 二级参考文献(8)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(8)
  • 参考文献(0)
  • 二级参考文献(8)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(7)
  • 参考文献(2)
  • 二级参考文献(5)
2016(6)
  • 参考文献(1)
  • 二级参考文献(5)
2017(9)
  • 参考文献(2)
  • 二级参考文献(7)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
目标检测
深度学习
TensorFlow
全卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子测量技术
半月刊
1002-7300
11-2175/TN
大16开
北京市东城区北河沿大街79号
2-336
1977
chi
出版文献量(篇)
9342
总下载数(次)
50
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导