基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
飞机座舱气压变化范围较大,对气体传感器产生较大影响,导致空气质量检测结果不准确,提出采用RBF神经网络进行气压补偿.首先设计试验系统;然后对HCHO、CO、C02和NO2共4种典型的座舱空气质量检测气体传感器进行正负压试验,采集试验数据并绘制各气体的特征变化曲线;最后建立了以12个气压点和测量值为输入、期望值为输出的3层RBF神经网络模型,并对试验数据进行了误差修正补偿.结果 表明:采用该RBF神经网络补偿算法,HCHO、CO、CO2、N02气体传感器的最大相对误差分别由32.85%、28.42%、52.87%、87.18%降低到2.001%、3.668%、2.392%、12.68%,达到较好的补偿效果.
推荐文章
基于Wi Fi的空气质量检测系统
PM2.5
温度
湿度
数据传输
物联网
便携式空气质量检测系统设计
空气质量检测
Raspberry Pi
PM2.5/PM10
GPS
数据库
基于多传感器融合的空气质量检测
空气质量
BP神经网络
检测模型
传感器阵列
学习样本
机器学习算法
基于LSTM的空气质量预测方法
空气质量
相关性分析
AQI指数
LSTM神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 机舱空气质量检测中的压力补偿方法
来源期刊 计量学报 学科 地球科学
关键词 计量学 空气质量检测 气压补偿 飞机座舱 气体传感器 RBF神经网络
年,卷(期) 2020,(11) 所属期刊栏目
研究方向 页码范围 1443-1448
页数 6页 分类号 TB99|X851
字数 语种 中文
DOI 10.3969/j.issn.1000-1158.2020.11.21
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 何永勃 26 132 8.0 10.0
2 黄吕霖 2 0 0.0 0.0
3 田吉磊 2 0 0.0 0.0
4 李明伟 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (48)
共引文献  (30)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(9)
  • 参考文献(2)
  • 二级参考文献(7)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
计量学
空气质量检测
气压补偿
飞机座舱
气体传感器
RBF神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计量学报
月刊
1000-1158
11-1864/TB
大16开
北京1413信箱
2-798
1980
chi
出版文献量(篇)
3549
总下载数(次)
8
总被引数(次)
20173
论文1v1指导