基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提升原始SSD算法的小目标检测精度及鲁棒性,提出一种基于通道注意力机制的SSD目标检测算法.在原始SSD算法的基础上对高层特征图进行全局池化操作,结合通道注意力机制增强高层特征图的语义信息,并利用膨胀卷积结构对低层特征图进行下采样扩大其感受野以增加细节与位置信息,再通过级联的方式将低层特征图与高层特征图相融合,从而实现小目标及遮挡目标的有效识别.实验结果表明,与原始SSD算法相比,该算法在PASCAL VOC数据集上的平均精度均值提升了2.2%,具有更高的小目标检测精度和更好的鲁棒性.
推荐文章
引入注意力机制的自然场景文本检测算法研究
注意力机制
文本检测
深度学习
特征提取
基于注意力机制和特征融合改进的小目标检测算法
目标检测
注意力机制
特征融合
神经网络
基于双注意力机制的遥感图像目标检测
深度学习
目标检测
特征提取
双注意力机制模型
空洞卷积
Focalloss损失函数
具有全局特征的空间注意力机制
卷积神经网络
空间注意力机制
全局特征
特征融合
目标分类
目标检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 引入通道注意力机制的SSD目标检测算法
来源期刊 计算机工程 学科 工学
关键词 SSD算法 全局池化 通道注意力机制 膨胀卷积 PASCAL VOC数据集
年,卷(期) 2020,(8) 所属期刊栏目 图形图像处理
研究方向 页码范围 264-270
页数 7页 分类号 TP317
字数 5159字 语种 中文
DOI 10.19678/j.issn.1000-3428.0054946
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张海涛 辽宁工程技术大学软件学院 33 200 8.0 12.0
2 张梦 辽宁工程技术大学软件学院 2 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (152)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(6)
  • 参考文献(0)
  • 二级参考文献(6)
2017(11)
  • 参考文献(2)
  • 二级参考文献(9)
2018(5)
  • 参考文献(5)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SSD算法
全局池化
通道注意力机制
膨胀卷积
PASCAL VOC数据集
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
论文1v1指导