基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
大规模风电接入电力系统会造成系统频率波动,利用不同高度的风速、风向的余弦值、温度、湿度、气压对风力发电数据进行准确预测,有利于制定合理的调度计划,降低风电对电力系统的影响.文章基于AGC自动发电控制的要求,选取每15 min为一个数据采集点,构建大数据集,建立了基于LSTM结构的循环神经网络超短期风力发电预测模型,并每15 min根据最新实际采集数据更新数据集,实现了预测网络的滚动更新.最后通过某风电场的实际数据进行验证,结果表明,该算法预测精度高,对超短期风力发电预测有良好的适用性.
推荐文章
基于TensorFlow的LSTM循环神经网络短期电力负荷预测
Tensor Flow
LSTM
深度学习
短期电力负荷预测
基于LSTM循环神经网络的电池SOC预测方法
锂离子电池
荷电状态(SOC)
电动汽车
长短期记忆(LSTM)
循环神经网络
基于长短期记忆神经网络的风力发电 功率预测方法
深度学习
时序预测
风力发电
长短期记忆神经网络
基于LSTM时间递归神经网络的短期电力负荷预测
短期电力负荷预测
LSTM
时间递归
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于LSTM循环神经网络的风力发电预测
来源期刊 可再生能源 学科 工学
关键词 风力发电 LSTM循环神经网络 滚动预测 超短期风力发电预测
年,卷(期) 2020,(9) 所属期刊栏目
研究方向 页码范围 1187-1191
页数 5页 分类号 TK81
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (118)
共引文献  (74)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(13)
  • 参考文献(0)
  • 二级参考文献(13)
2012(11)
  • 参考文献(0)
  • 二级参考文献(11)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(12)
  • 参考文献(0)
  • 二级参考文献(12)
2015(19)
  • 参考文献(0)
  • 二级参考文献(19)
2016(11)
  • 参考文献(1)
  • 二级参考文献(10)
2017(14)
  • 参考文献(1)
  • 二级参考文献(13)
2018(11)
  • 参考文献(3)
  • 二级参考文献(8)
2019(3)
  • 参考文献(2)
  • 二级参考文献(1)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
风力发电
LSTM循环神经网络
滚动预测
超短期风力发电预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
可再生能源
月刊
1671-5292
21-1469/TK
大16开
辽宁省营口市西市区银泉街65号
8-61
1983
chi
出版文献量(篇)
4935
总下载数(次)
14
总被引数(次)
41118
论文1v1指导