Electron-withdrawing functional ligand promotes CO2 reduction catalysis in single atom catalyst
Electron-withdrawing functional ligand promotes CO2 reduction catalysis in single atom catalyst
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
摘要:
Electrochemical carbon dioxide reduction reaction (CO2RR) powered by renewable electricity offers an attractive approach to reduce carbon emission and at the same time produce valuable chemicals/fuels.To design efficient CO2 reduction electrocatalyst,it is important to understand the structure-activity relationship.Herein,we design a series of single Co atoms electrocatalysts with well-defined active sites electronic structures,which exhibit outstanding CO2RR activity with controllable selectivity to CO.Experimental and density functional theory (DFT) calculation studies show that introducing nitro (amino) ligand next to single Co atom catalytic center with electron-withdrawing (electron-donating) capability favors (hinders) CO2 reduction cata-lysis.This work provides an in-depth understanding of how functional ligand affects the splitting of transition metal 3d electron orbital,thereby changing the electron transfer from transition metal active site to CO2,which is closely related to the Gibbs free energy of the rate-determining step (CO2+e-+*→*CO2 ).